Proteolytic processing of the receptor‐type protein tyrosine phosphatase PTPBR7

The single‐copy mouse gene Ptprr gives rise to different protein tyrosine phosphatase (PTP) isoforms in neuronal cells through the use of distinct promoters, alternative splicing, and multiple translation initiation sites. Here, we examined the array of post‐translational modifications imposed on th...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 274; no. 1; pp. 96 - 108
Main Authors Dilaver, Gönül, van de Vorstenbosch, Rinske, Tárrega, Céline, Ríos, Pablo, Pulido, Rafael, van Aerde, Karlijn, Fransen, Jack, Hendriks, Wiljan
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2007
Subjects
Online AccessGet full text
ISSN1742-464X
1742-4658
DOI10.1111/j.1742-4658.2006.05568.x

Cover

More Information
Summary:The single‐copy mouse gene Ptprr gives rise to different protein tyrosine phosphatase (PTP) isoforms in neuronal cells through the use of distinct promoters, alternative splicing, and multiple translation initiation sites. Here, we examined the array of post‐translational modifications imposed on the PTPRR protein isoforms PTPBR7, PTP‐SL, PTPPBSγ42 and PTPPBSγ37, which have distinct N‐terminal segments and localize to different parts of the cell. All isoforms were found to be short‐lived, constitutively phosphorylated proteins. In addition, the transmembrane isoform, PTPBR7, was subject to N‐terminal proteolytic processing, in between amino acid position 136 and 137, resulting in an additional, 65‐kDa transmembrane PTPRR isoform. Unlike for some other receptor‐type PTPs, the proteolytically produced N‐terminal ectodomain does not remain associated with this PTPRR‐65. Shedding of PTPBR7‐derived polypeptides at the cell surface further adds to the molecular complexity of PTPRR biology.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1742-464X
1742-4658
DOI:10.1111/j.1742-4658.2006.05568.x