Metabolic analyses by metatranscriptomics highlight plasticity in phosphorus acquisition during monospecific and multispecies algal blooms
Algal blooms have emerged as a global phenomenon affecting coastal areas, while the regulatory mechanisms are poorly understood. To explore the effects of environmental factors, especially phosphate concentrations, on the outbreak and maintenance of algal blooms, this study used a metatranscriptomic...
Saved in:
Published in | Hydrobiologia Vol. 847; no. 4; pp. 1071 - 1085 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0018-8158 1573-5117 |
DOI | 10.1007/s10750-019-04169-x |
Cover
Summary: | Algal blooms have emerged as a global phenomenon affecting coastal areas, while the regulatory mechanisms are poorly understood. To explore the effects of environmental factors, especially phosphate concentrations, on the outbreak and maintenance of algal blooms, this study used a metatranscriptomic approach to analyze the molecular responses of phytoplankton during two blooms in 2013 near Qinhuangdao, China. Pico/nanophytoplanktons (< 10 μm) were dominant numerically in the two algal blooms. Significant shifts in KEGG pathway expression were observed with the succession of phytoplankton, suggesting high temporal plasticity in the expressed metabolic capacity. The KEGG pathway expression pattern in the multispecies bloom on August 22 showed higher gene expression of primary metabolic pathways and lower gene expression of secondary metabolic pathways than that in the monospecific bloom on July 20. Pico/nanophytoplankton showed species-specific transcriptional responses to the shifts in N/P ratios and phosphate concentrations. Our results demonstrate how the species specificity and temporal plasticity of resource utilization capacities enable pico/nanophytoplankton to induce monospecific and multispecies blooms under different phosphate conditions. This study provides a basis for further work on the gene responses of multispecies assemblages of algae to different environmental parameters during algal bloom succession. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-8158 1573-5117 |
DOI: | 10.1007/s10750-019-04169-x |