A Bayesian model of metapopulation viability, with application to an endangered amphibian

Aim: Population viability analysis (PVA) is used to quantify the risks faced by species under alternative management regimes. Bayesian PVAs allow uncertainty in the parameters of the underlying population model to be easily propagated through to the predictions. We developed a Bayesian stochastic pa...

Full description

Saved in:
Bibliographic Details
Published inDiversity & distributions Vol. 19; no. 5-6; pp. 555 - 566
Main Authors Heard, Geoffrey W., McCarthy, Michael A., Scroggie, Michael P., Baumgartner, John B., Parris, Kirsten M.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.05.2013
Blackwell Publishing
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1366-9516
1472-4642
DOI10.1111/ddi.12052

Cover

More Information
Summary:Aim: Population viability analysis (PVA) is used to quantify the risks faced by species under alternative management regimes. Bayesian PVAs allow uncertainty in the parameters of the underlying population model to be easily propagated through to the predictions. We developed a Bayesian stochastic patch occupancy model (SPOM) and used this model to assess the viability of a metapopulation of the growling grass frog (Litoria raniformis) under different urbanization scenarios. Location: Melbourne, Victoria, Australia. Methods: We fitted a Bayesian model that accounted for imperfect detection to a multiseason occupancy dataset for L. raniformis collected across northern Melbourne. The probability of extinction was modelled as a function of effective wetland area, aquatic vegetation cover and connectivity, using logistic regression. The probability of colonization was modelled as a function of connectivity alone. We then simulated the dynamics of a metapopulation of L. raniformis subject to differing levels of urbanization and compensatory wetland creation. Uncertainty was propagated by conducting simulations for 5000 estimates of the parameters of the models for extinction and colonization. Results: There was considerable uncertainty in both the probability of quasi-extinction and the minimum number of occupied wetlands under most urbanization scenarios. Uncertainty around the change in quasi-extinction risk and minimum metapopulation size increased with increasing habitat loss. For our focal metapopulation, the analysis revealed that significant investment in new wetlands may be required to offset the impacts of urbanization. Main conclusions: Bayesian approaches to PVA allow parametric uncertainty to be propagated and considered in management decisions. They also provide means of identifying parameters that represent critical uncertainties, and, through the use of informative priors, can easily assimilate new data to reduce parametric uncertainty. These advantages, and the ready availability of software to run Bayesian analyses, will ensure that Bayesian approaches are used increasingly for PVAs.
Bibliography:Appendix S1 Code for fitting the occupancy turnover model and extracting parameter estimates.Appendix S2 Code for simulating the dynamics of the Donnybrook metapopulation.Appendix S3 5000 estimates of the model parameters.Figure S1 Relationships between the probability of extinction and effective wetland area, aquatic vegetation cover and connectivity, and between the probability of colonization and connectivity. Table S1 Posteriors of the parameters of the regression models for extinction and colonization.
ArticleID:DDI12052
ark:/67375/WNG-B5DCQNGZ-B
istex:2932C254580065B0E61A1DFD806F888CA7C2128A
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1366-9516
1472-4642
DOI:10.1111/ddi.12052