Simulation-based multi-criteria decision making: an interactive method with a case study on infectious disease epidemics

Whenever a system needs to be operated by a central decision making authority in the presence of two or more conflicting goals, methods from multi-criteria decision making can help to resolve the trade-offs between these goals. In this work, we devise an interactive simulation-based methodology for...

Full description

Saved in:
Bibliographic Details
Published inAnnals of operations research pp. 1 - 30
Main Authors Dunke, Fabian, Nickel, Stefan
Format Journal Article
LanguageEnglish
Published New York, NY Springer US 12.10.2021
Subjects
Online AccessGet full text
ISSN1572-9338
0254-5330
1572-9338
DOI10.1007/s10479-021-04321-8

Cover

More Information
Summary:Whenever a system needs to be operated by a central decision making authority in the presence of two or more conflicting goals, methods from multi-criteria decision making can help to resolve the trade-offs between these goals. In this work, we devise an interactive simulation-based methodology for planning and deciding in complex dynamic systems subject to multiple objectives and parameter uncertainty. The outline intermittently employs simulation models and global sensitivity analysis methods in order to facilitate the acquisition of system-related knowledge throughout the iterations. Moreover, the decision maker participates in the decision making process by interactively adjusting control variables and system parameters according to a guiding analysis question posed for each iteration. As a result, the overall decision making process is backed up by sensitivity analysis results providing increased confidence in terms of reliability of considered decision alternatives. Using the efficiency concept of Pareto optimality and the sensitivity analysis method of Sobol' sensitivity indices, the methodology is then instantiated in a case study on planning and deciding in an infectious disease epidemic situation similar to the 2020 coronavirus pandemic. Results show that the presented simulation-based methodology is capable of successfully addressing issues such as system dynamics, parameter uncertainty, and multi-criteria decision making. Hence, it represents a viable tool for supporting decision makers in situations characterized by time dynamics, uncertainty, and multiple objectives.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1572-9338
0254-5330
1572-9338
DOI:10.1007/s10479-021-04321-8