Memory-Efficient Hardware Architecture of 2-D Dual-Mode Lifting-Based Discrete Wavelet Transform

Memory requirements (for storing intermediate signals) and critical path are essential issues for 2-D (or multidimensional) transforms. This paper presents new algorithms and hardware architectures to address the above issues in 2-D dual-mode (supporting 5/3 lossless and 9/7 lossy coding) lifting-ba...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 23; no. 4; pp. 671 - 683
Main Authors Hsia, Chih-Hsien, Chiang, Jen-Shiun, Guo, Jing-Ming
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2012.2211953

Cover

More Information
Summary:Memory requirements (for storing intermediate signals) and critical path are essential issues for 2-D (or multidimensional) transforms. This paper presents new algorithms and hardware architectures to address the above issues in 2-D dual-mode (supporting 5/3 lossless and 9/7 lossy coding) lifting-based discrete wavelet transform (LDWT). The proposed 2-D dual-mode LDWT architecture has the merits of low transpose memory (TM), low latency, and regular signal flow, making it suitable for very large-scale integration implementation. The TM requirement of the N×N 2-D 5/3 mode LDWT and 2-D 9/7 mode LDWT are 2 N and 4 N , respectively. Comparison results indicate that the proposed hardware architecture has a lower lifting-based low TM size requirement than the previous architectures. As a result, it can be applied to real-time visual operations such as JPEG2000, motion-JPEG2000, MPEG-4 still texture object decoding, and wavelet-based scalable video coding applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2012.2211953