Current-Source Converter and Cycloconverter Topologies for Industrial Medium-Voltage Drives

This paper, along with an earlier published paper as Part 1, provides a comprehensive review of the state of the art of high-power converters (above 1 MW) for adjustable-speed ac drives. In this highly active area, different converter topologies have been developed for various drive applications in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 55; no. 7; pp. 2786 - 2797
Main Authors Bin Wu, Pontt, J., Rodriguez, J., Bernet, S., Kouro, S.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2008.924175

Cover

More Information
Summary:This paper, along with an earlier published paper as Part 1, provides a comprehensive review of the state of the art of high-power converters (above 1 MW) for adjustable-speed ac drives. In this highly active area, different converter topologies have been developed for various drive applications in the industry. Due to its extensive coverage, the subject is divided into two parts: multilevel voltage source and current source converter topologies. This paper is focused on the second part and covers the current source converter technologies, including pulsewidth-modulated current-source inverters (CSIs) and load-commutated inverters. In addition, this paper also addresses the present status of the direct converter, which is also known as cycloconverter (CCV). This paper focuses on the latest CSI and CCV technologies and an overview of the commonly used modulation schemes. It also provides the latest technological advances and future trends in CSI- and CCV-fed large drives. This paper serves as a useful reference for academic researchers and practicing engineers in the field of power converters and adjustable-speed drives.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2008.924175