Enhanced optical transmission through double-layer gold slit arrays

We investigate the relationship between the transmission and the layer distance of double-layer gold slit arrays by using the finite-difference time-domain method. The results show that the transmission properties can be influenced strongly by layer distance. We attribute the two types of resonant m...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 19; no. 7; pp. 570 - 575
Main Author 谢素霞 李宏建 周昕 徐海清 付少丽
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.07.2010
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/19/7/077803

Cover

More Information
Summary:We investigate the relationship between the transmission and the layer distance of double-layer gold slit arrays by using the finite-difference time-domain method. The results show that the transmission properties can be influenced strongly by layer distance. We attribute the two types of resonant modes to surface plasmon resonance and the localised waveguide resonance. We find that the localised waveguide transmission peak redshifts and becomes broader with increasing layer distance D. We also describe and explain the splitting, shift, and degeneration of the surface plasmon resonant transmission peak theoretically. In addition, to clarify the physical mechanism of the transmission behaviours, we analyse the distributions of electric field and total energy for the three transmission peaks with distance D = 45 nm for the double-layer system. Light transporting behaviours are mostly concentrated in the region of the slits as well as the interspaces of the two layers, and for different resonant wavelengths the electric field and energy distributions are different. It is expected that the results obtained here will be helpful for designing subwavelength metallic grating devices.
Bibliography:TN929.11
slit array, layer distance, localised waveguide resonance, surface plasmon resonance
11-5639/O4
TN215
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/19/7/077803