Experimental investigation on partially coherent higher-order non-diffractive beams

We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent hig...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 9; pp. 204 - 210
Main Author 陈光明 华黎闽 林惠川 蒲继摊
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/20/9/094203

Cover

More Information
Summary:We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone.
Bibliography:We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone.
physical optics, higher-order non-diffractive Bessel beam, axicon, partially coherence
Chen Guang-Ming Hua Li-Min Lin Hui-Chuan and Pu Ji-Xiong a) College of Information Science ~ Engineering, Huaqiao University, Quanzhou 362021, China b) College of F~jian Education, F~zhou 350025, China
11-5639/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/9/094203