Experimental investigation on partially coherent higher-order non-diffractive beams
We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent hig...
Saved in:
| Published in | Chinese physics B Vol. 20; no. 9; pp. 204 - 210 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
IOP Publishing
01.09.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 |
| DOI | 10.1088/1674-1056/20/9/094203 |
Cover
| Summary: | We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone. |
|---|---|
| Bibliography: | We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone. physical optics, higher-order non-diffractive Bessel beam, axicon, partially coherence Chen Guang-Ming Hua Li-Min Lin Hui-Chuan and Pu Ji-Xiong a) College of Information Science ~ Engineering, Huaqiao University, Quanzhou 362021, China b) College of F~jian Education, F~zhou 350025, China 11-5639/O4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 1674-1056 2058-3834 |
| DOI: | 10.1088/1674-1056/20/9/094203 |