High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz

A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion prop- erty and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 9; pp. 159 - 162
Main Author 尹国冰 李曙光 王晓琰 刘硕
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/20/9/090701

Cover

More Information
Summary:A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion prop- erty and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.
Bibliography:Yin Guo-Bin Li Shu-Guang Wang Xiao-Yan and Liu Shuo Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China
terahertz, zero dispersion, birefringence, photonic crystal fibres
A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion prop- erty and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.
11-5639/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/9/090701