Role of nitrogen and oxygen in emission of Si quantum dots formed by pulse laser
Silicon quantum dots fabricated by nanosecond pulsed laser in nitrogen, oxygen or air atmosphere have enhanced photoluminescence (PL) emission with the stimulated emission observed at about 700 nm. It is difficult to distinguish between the photoluminescence peaks emitted from samples prepared in di...
Saved in:
Published in | Chinese physics B Vol. 19; no. 9; pp. 590 - 594 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.09.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/19/9/097801 |
Cover
Summary: | Silicon quantum dots fabricated by nanosecond pulsed laser in nitrogen, oxygen or air atmosphere have enhanced photoluminescence (PL) emission with the stimulated emission observed at about 700 nm. It is difficult to distinguish between the photoluminescence peaks emitted from samples prepared in different atmospheres. The reason for the appearance of similar peaks may be the similar distribution of the localised states in the gap for different samples when silicon dangling bonds of quantum dots are passivated by nitrogen or oxygen. It is revealed that both the kind and the density of passivated bonds on quantum dot surface prepared in oxygen or nitrogen have a strong influence on the enhancement of PL emission. |
---|---|
Bibliography: | O471.5 11-5639/O4 TN241 nitrogen and oxygen, quantum dots, stimulated emission, localised states ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/19/9/097801 |