Entropic noise induced stability and double entropic stochastic resonance induced by correlated noises

For the activated dynamics of a Brownian particle moving in a confined system with the presence of entropic barriers, this paper investigates a periodic driving and correlations between two noises. Within the two-state approximation, the explicit expressions of the mean first passage time (MFPT) and...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 5; pp. 146 - 152
Main Author 曾春华 王华 王辉涛
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.05.2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/20/5/050502

Cover

More Information
Summary:For the activated dynamics of a Brownian particle moving in a confined system with the presence of entropic barriers, this paper investigates a periodic driving and correlations between two noises. Within the two-state approximation, the explicit expressions of the mean first passage time (MFPT) and the spectral power amplification (SPA) axe obtained, respectively. Based on the numerical computations, it is found that: (i) The MFPT as a function of the noise intensity exhibits a maximum with the positive correlations between two noises (λ〉0), this maximum for MFPT shows the characteristic of the entropic noise induced stability (ENIS) effect. The intensity A of correlations between two noises can enhance the ENIS effect. (ii) The SPA as a function of the noise intensity exhibits a double-peak by tuning the noise correlation intensity λ, i.e., the existence of a double-peak behaviour is the identifying characteristic of the double entropic stochastic resonance phenomenon.
Bibliography:For the activated dynamics of a Brownian particle moving in a confined system with the presence of entropic barriers, this paper investigates a periodic driving and correlations between two noises. Within the two-state approximation, the explicit expressions of the mean first passage time (MFPT) and the spectral power amplification (SPA) axe obtained, respectively. Based on the numerical computations, it is found that: (i) The MFPT as a function of the noise intensity exhibits a maximum with the positive correlations between two noises (λ〉0), this maximum for MFPT shows the characteristic of the entropic noise induced stability (ENIS) effect. The intensity A of correlations between two noises can enhance the ENIS effect. (ii) The SPA as a function of the noise intensity exhibits a double-peak by tuning the noise correlation intensity λ, i.e., the existence of a double-peak behaviour is the identifying characteristic of the double entropic stochastic resonance phenomenon.
Zeng Chun-Hua,Wang Hua,Wang Hui-Tao a) Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China b) Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
correlated noises, confined system, entropic noise induced stability, double entropic stochastic resonance
11-5639/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/5/050502