Almost everywhere convergence of the spherical partial Fourier integrals for radial functions

We study new conditions on a radial function f in order to have the almost everywhere convergence of the spherical partial Fourier integrals. 2000 Mathematics Subject Classification. Primary 26D10; Secondary 44B20, 42EB10. Key words and phrases. Fourier integrals, extrapolation theory, almost everyw...

Full description

Saved in:
Bibliographic Details
Published inBanach journal of mathematical analysis Vol. 4; no. 1; pp. 92 - 99
Main Author Carro, Maria J.
Format Journal Article
LanguageEnglish
Published Durham Springer 2010
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1735-8787
2662-2033
1735-8787
DOI10.15352/bjma/1272374673

Cover

More Information
Summary:We study new conditions on a radial function f in order to have the almost everywhere convergence of the spherical partial Fourier integrals. 2000 Mathematics Subject Classification. Primary 26D10; Secondary 44B20, 42EB10. Key words and phrases. Fourier integrals, extrapolation theory, almost everywhere convergence, radial functions, Muckenhoupt weights.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1735-8787
2662-2033
1735-8787
DOI:10.15352/bjma/1272374673