Ensquared Energy and Optical Centroid Efficiency in Optical Sensors: Part 2, Primary Aberrations

We previously proposed that the optical centroid efficiency (OCE) might be a preferred figure-of-merit to the enclosed energy of a rectangular pixel (EOD) for an instrument subject to unpredictable environmental jitter and alignment conditions. Here we follow the same symbols for the corresponding q...

Full description

Saved in:
Bibliographic Details
Published inPhotonics Vol. 11; no. 9; p. 855
Main Authors Strojnik, Marija, Martin, Robert, Wang, Yaujen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text
ISSN2304-6732
2304-6732
DOI10.3390/photonics11090855

Cover

More Information
Summary:We previously proposed that the optical centroid efficiency (OCE) might be a preferred figure-of-merit to the enclosed energy of a rectangular pixel (EOD) for an instrument subject to unpredictable environmental jitter and alignment conditions. Here we follow the same symbols for the corresponding quantities, particularly the width of the pixel as being equal to 2d. Here we analyze the performance of the OCE vs. the EOD for the three Seidel primary aberrations of an optical component: spherical, coma, and astigmatism, plus defocus. We show that the OCE has an approximate U-shape when graphed against the EOD, for the aberrations ranging from 0 to 1.25λ. We conclude that for pixels larger than 2d = 3λF/#, a small pixel will feature better performance when expecting jitter, misalignment, and other environmental and unpredictable conditions. When evaluating the performance of low-aberration instruments in dynamic and unpredictable environments, the choice of the lager pixel 2d = 7λF/# might be advantageous. Its selection will result in the deterioration of image resolution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2304-6732
2304-6732
DOI:10.3390/photonics11090855