An Optimised CNN Hardware Accelerator Applicable to IoT End Nodes for Disruptive Healthcare
In the evolving landscape of computer vision, the integration of machine learning algorithms with cutting-edge hardware platforms is increasingly pivotal, especially in the context of disruptive healthcare systems. This study introduces an optimized implementation of a Convolutional Neural Network (...
Saved in:
| Published in | IoT Vol. 5; no. 4; pp. 901 - 921 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Montreal
MDPI AG
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2624-831X 2624-831X |
| DOI | 10.3390/iot5040041 |
Cover
| Summary: | In the evolving landscape of computer vision, the integration of machine learning algorithms with cutting-edge hardware platforms is increasingly pivotal, especially in the context of disruptive healthcare systems. This study introduces an optimized implementation of a Convolutional Neural Network (CNN) on the Basys3 FPGA, designed specifically for accelerating the classification of cytotoxicity in human kidney cells. Addressing the challenges posed by constrained dataset sizes, compute-intensive AI algorithms, and hardware limitations, the approach presented in this paper leverages efficient image augmentation and pre-processing techniques to enhance both prediction accuracy and the training efficiency. The CNN, quantized to 8-bit precision and tailored for the FPGA’s resource constraints, significantly accelerates training by a factor of three while consuming only 1.33% of the power compared to a traditional software-based CNN running on an NVIDIA K80 GPU. The network architecture, composed of seven layers with excessive hyperparameters, processes downscale grayscale images, achieving notable gains in speed and energy efficiency. A cornerstone of our methodology is the emphasis on parallel processing, data type optimization, and reduced logic space usage through 8-bit integer operations. We conducted extensive image pre-processing, including histogram equalization and artefact removal, to maximize feature extraction from the augmented dataset. Achieving an accuracy of approximately 91% on unseen images, this FPGA-implemented CNN demonstrates the potential for rapid, low-power medical diagnostics within a broader IoT ecosystem where data could be assessed online. This work underscores the feasibility of deploying resource-efficient AI models in environments where traditional high-performance computing resources are unavailable, typically in healthcare settings, paving the way for and contributing to advanced computer vision techniques in embedded systems. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2624-831X 2624-831X |
| DOI: | 10.3390/iot5040041 |