Phase Oscillatory Network and Visual Pattern Recognition
We explore a properly interconnected set of Kuramoto type oscillators that results in a new associative-memory network configuration, which includes second- and third-order additional terms in the Fourier expansion of the network's coupling. Investigation of the response of the network to diffe...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 26; no. 7; pp. 1539 - 1544 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2014.2345572 |
Cover
Summary: | We explore a properly interconnected set of Kuramoto type oscillators that results in a new associative-memory network configuration, which includes second- and third-order additional terms in the Fourier expansion of the network's coupling. Investigation of the response of the network to different external stimuli indicates an increase in the network capability for coding and information retrieval. Comparison of the network output with that of an equivalent experiment with subjects, for recognizing perturbed binary patterns, shows comparable results between the two approaches. We also discuss the enhanced storage capacity of the network. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2014.2345572 |