Automated Prefabricated Slab Splitting Design Using a Multipopulation Coevolutionary Algorithm and BIM

The prefabricated composite slab (PCS) is an essential horizontal component in a building, which is made of a precast part and a cast-in-place concrete layer. In practice, the floor should be split into many small PCSs for the convenience of manufacturing and installation. Currently, the splitting d...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 14; no. 2; p. 433
Main Authors Xu, Chengran, Zheng, Xiaolei, Wu, Zhou, Zhang, Chao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2024
Subjects
Online AccessGet full text
ISSN2075-5309
2075-5309
DOI10.3390/buildings14020433

Cover

More Information
Summary:The prefabricated composite slab (PCS) is an essential horizontal component in a building, which is made of a precast part and a cast-in-place concrete layer. In practice, the floor should be split into many small PCSs for the convenience of manufacturing and installation. Currently, the splitting design of PCS mostly relies on sound knowledge and valuable experience of construction. While rule-based parametric design tools using building information modeling (BIM) can facilitate PCS splitting, the generated solution is suboptimal and limited. This paper presents an intelligent BIM-based framework to automatically complete the splitting design of PCSs. A collaborative optimization model is formulated to minimize the composite costs of manufacturing and installation. Individuals with similar area information are grouped into a subpopulation, and the optimization objective is to minimize the specifications and quantities of PCSs. Through the correlation information within the subpopulation and the shared information among each other, the variable correlation is eliminated to accomplish the task of collaborative optimization. The multipopulation coevolution particle swarm optimization (PSO) algorithm is implemented for the collaborative optimization model to determine the sizes and positions of all PCSs. The proposed framework is applied in the optimized splitting design of PCSs in a standard floor to demonstrate its practicability and efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings14020433