HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks

The increasing number of experimentally detected interactions between proteins makes it difficult for researchers to extract the interactions relevant for specific biological processes or diseases. This makes it necessary to accompany the large-scale detection of protein-protein interactions (PPIs)...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 45; no. D1; pp. D408 - D414
Main Authors Alanis-Lobato, Gregorio, Andrade-Navarro, Miguel A., Schaefer, Martin H.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 04.01.2017
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4954
1362-4962
DOI10.1093/nar/gkw985

Cover

More Information
Summary:The increasing number of experimentally detected interactions between proteins makes it difficult for researchers to extract the interactions relevant for specific biological processes or diseases. This makes it necessary to accompany the large-scale detection of protein-protein interactions (PPIs) with strategies and tools to generate meaningful PPI subnetworks. To this end, we generated the Human Integrated Protein-Protein Interaction rEference or HIPPIE (http://cbdm.uni-mainz.de/hippie/). HIPPIE is a one-stop resource for the generation and interpretation of PPI networks relevant to a specific research question. We provide means to generate highly reliable, context-specific PPI networks and to make sense out of them. We just released the second major update of HIPPIE, implementing various new features. HIPPIE grew substantially over the last years and now contains more than 270 000 confidence scored and annotated PPIs. We integrated different types of experimental information for the confidence scoring and the construction of context-specific networks. We implemented basic graph algorithms that highlight important proteins and interactions. HIPPIE's graphical interface implements several ways for wet lab and computational scientists alike to access the PPI data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-1048
1362-4962
1362-4954
1362-4962
DOI:10.1093/nar/gkw985