Stochastic Analysis of the LMS and NLMS Algorithms for Cyclostationary White Gaussian Inputs
This paper studies the stochastic behavior of the LMS and NLMS algorithms for a system identification framework when the input signal is a cyclostationary white Gaussian process. The input cyclostationary signal is modeled by a white Gaussian random process with periodically time-varying power. Math...
Saved in:
| Published in | IEEE transactions on signal processing Vol. 62; no. 9; pp. 2238 - 2249 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.05.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2014.2307278 |
Cover
| Summary: | This paper studies the stochastic behavior of the LMS and NLMS algorithms for a system identification framework when the input signal is a cyclostationary white Gaussian process. The input cyclostationary signal is modeled by a white Gaussian random process with periodically time-varying power. Mathematical models are derived for the mean and mean-square-deviation (MSD) behavior of the adaptive weights with the input cyclostationarity. These models are also applied to the non-stationary system with a random walk variation of the optimal weights. Monte Carlo simulations of the two algorithms provide strong support for the theory. Finally, the performance of the two algorithms is compared for a variety of scenarios. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2014.2307278 |