Prerequisites between learning objects: Automatic extraction based on a machine learning approach

One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials, appropriate for their educational purposes. Learning materials can be retrieved from structured repositories, such as repositories of Learnin...

Full description

Saved in:
Bibliographic Details
Published inTelematics and informatics Vol. 35; no. 3; pp. 595 - 610
Main Authors Gasparetti, Fabio, De Medio, Carlo, Limongelli, Carla, Sciarrone, Filippo, Temperini, Marco
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0736-5853
1879-324X
DOI10.1016/j.tele.2017.05.007

Cover

Abstract One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials, appropriate for their educational purposes. Learning materials can be retrieved from structured repositories, such as repositories of Learning Objects and Massive Open Online Courses; they could also come from unstructured sources, such as web hypertext pages. Platforms for distance education often implement algorithms for recommending specific educational resources and personalized learning paths to students. But choosing and sequencing the adequate learning materials to build adaptive courses may reveal to be quite a challenging task. In particular, establishing the prerequisite relationships among learning objects, in terms of prior requirements needed to understand and complete before making use of the subsequent contents, is a crucial step for faculty, instructional designers or automated systems whose goal is to adapt existing learning objects to delivery in new distance courses. Nevertheless, this information is often missing. In this paper, an innovative machine learning-based approach for the identification of prerequisites between text-based resources is proposed. A feature selection methodology allows us to consider the attributes that are most relevant to the predictive modeling problem. These features are extracted from both the input material and weak-taxonomies available on the web. Input data undergoes a Natural language process that makes finding patterns of interest more easy for the applied automated analysis. Finally, the prerequisite identification is cast to a binary statistical classification task. The accuracy of the approach is validated by means of experimental evaluations on real online coursers covering different subjects.
AbstractList One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials, appropriate for their educational purposes. Learning materials can be retrieved from structured repositories, such as repositories of Learning Objects and Massive Open Online Courses; they could also come from unstructured sources, such as web hypertext pages. Platforms for distance education often implement algorithms for recommending specific educational resources and personalized learning paths to students. But choosing and sequencing the adequate learning materials to build adaptive courses may reveal to be quite a challenging task. In particular, establishing the prerequisite relationships among learning objects, in terms of prior requirements needed to understand and complete before making use of the subsequent contents, is a crucial step for faculty, instructional designers or automated systems whose goal is to adapt existing learning objects to delivery in new distance courses. Nevertheless, this information is often missing. In this paper, an innovative machine learning-based approach for the identification of prerequisites between text-based resources is proposed. A feature selection methodology allows us to consider the attributes that are most relevant to the predictive modeling problem. These features are extracted from both the input material and weak-taxonomies available on the web. Input data undergoes a Natural language process that makes finding patterns of interest more easy for the applied automated analysis. Finally, the prerequisite identification is cast to a binary statistical classification task. The accuracy of the approach is validated by means of experimental evaluations on real online coursers covering different subjects.
One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials, appropriate for their educational purposes. Learning materials can be retrieved from structured repositories, such as repositories of Learning Objects and Massive Open Online Courses; they could also come from unstructured sources, such as web hypertext pages. Platforms for distance education often implement algorithms for recommending specific educational resources and personalized learning paths to students. But choosing and sequencing the adequate learning materials to build adaptive courses may reveal to be quite a challenging task. In particular, establishing the prerequisite relationships among learning objects, in terms of prior requirements needed to understand and complete before making use of the subsequent contents, is a crucial step for faculty, instructional designers or automated systems whose goal is to adapt existing learning objects to delivery in new distance courses. Nevertheless, this information is often missing. In this paper, an innovative machine learning-based approach for the identification of prerequisites between text-based resources is proposed. A feature selection methodology allows us to consider the attributes that are most relevant to the predictive modeling problem. These features are extracted from both the input material and weak-taxonomies available on the web. Input data undergoes a Natural language process that makes finding patterns of interest more easy for the applied automated analysis. Finally, the prerequisite identification is cast to a binary statistical classification task. The accuracy of the approach is validated by means of experimental evaluations on real online coursers covering different subjects.
Author De Medio, Carlo
Limongelli, Carla
Temperini, Marco
Gasparetti, Fabio
Sciarrone, Filippo
Author_xml – sequence: 1
  givenname: Fabio
  orcidid: 0000-0003-0263-531X
  surname: Gasparetti
  fullname: Gasparetti, Fabio
  email: gaspare@dia.uniroma3.it
  organization: Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
– sequence: 2
  givenname: Carlo
  surname: De Medio
  fullname: De Medio, Carlo
  email: carlo.demedio@uniroma3.it
  organization: Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
– sequence: 3
  givenname: Carla
  surname: Limongelli
  fullname: Limongelli, Carla
  email: limongel@dia.uniroma3.it
  organization: Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
– sequence: 4
  givenname: Filippo
  surname: Sciarrone
  fullname: Sciarrone, Filippo
  email: sciarro@dia.uniroma3.it
  organization: Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
– sequence: 5
  givenname: Marco
  surname: Temperini
  fullname: Temperini, Marco
  email: marte@dis.uniroma1.it
  organization: Sapienza University, Via Ariosto, 25, 00184 Rome, Italy
BookMark eNp9kEtLAzEQgINUsK3-AU8LnrtmsrvZrngpxRcU9KDgLcxmZzVLm22T1Me_N7WC4MHTDMN88_hGbGB7S4ydAk-Bgzzv0kBLSgWHMuVFynl5wIYwLatJJvLnARvyMpOTYlpkR2zkfcdjI1QwZPjgyNFma7wJ5JOawjuRTZaEzhr7kvR1Rzr4i2S2Df0Kg9EJfQSHOpjeJjV6apKYYLJC_Wos_ZK4Xrs-Fo_ZYYtLTyc_ccyerq8e57eTxf3N3Xy2mOhc8BDvRDltSeYNVC1yhAKyhvK2lFIIkHXRIIEkoXkLFdVlxatcIGYgKEMJOhuzs_3cuHazJR9U12-djSuV4KWMaiBKGDOx79Ku995Rq9bOrNB9KuBqp1J1aqdS7VQqXij-DU3_QNoE3BmIJszyf_Ryj1J8_c2QU14bspoa46JY1fTmP_wLxq-SrQ
CitedBy_id crossref_primary_10_1111_bjet_13158
crossref_primary_10_1371_journal_pone_0308607
crossref_primary_10_1186_s40561_019_0104_3
crossref_primary_10_1007_s11277_022_09812_w
crossref_primary_10_1142_S0218194022400034
crossref_primary_10_15178_va_2021_154_e1224
crossref_primary_10_2196_54443
crossref_primary_10_1007_s10639_022_10966_0
crossref_primary_10_3390_e23060668
crossref_primary_10_1109_ACCESS_2019_2910079
crossref_primary_10_1016_j_future_2021_08_021
crossref_primary_10_1109_ACCESS_2022_3194063
crossref_primary_10_1007_s12065_022_00706_1
crossref_primary_10_1109_TLT_2022_3193751
crossref_primary_10_1002_asi_24992
crossref_primary_10_4018_IJSWIS_2019040105
crossref_primary_10_1186_s40561_024_00301_0
crossref_primary_10_1007_s11036_018_1130_z
crossref_primary_10_1155_2021_7655462
crossref_primary_10_1109_TE_2021_3128019
crossref_primary_10_1007_s10758_023_09682_6
crossref_primary_10_3390_informatics11020029
crossref_primary_10_1155_2021_3510402
Cites_doi 10.1145/32206.32212
10.3115/v1/P14-1119
10.1016/0893-6080(89)90020-8
10.1145/1066677.1067049
10.1504/IJMSO.2013.056601
10.1006/knac.1993.1008
10.1145/219717.219745
10.1145/219717.219748
10.1109/ICEELI.2012.6360568
10.1109/ITHET.2015.7218038
10.18653/v1/D15-1193
10.1016/j.asr.2007.07.020
10.1016/j.compedu.2007.08.004
10.4324/9780203416082
10.1109/MS.2011.122
10.1145/1298406.1298425
10.1109/INCoS.2014.100
10.1007/BF01589116
10.1145/2684822.2685292
10.3115/1073445.1073478
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. Jun 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jun 2018
DBID AAYXX
CITATION
7SC
7SP
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.tele.2017.05.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-324X
EndPage 610
ExternalDocumentID 10_1016_j_tele_2017_05_007
S0736585316304890
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
9JO
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABMMH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADIYS
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSO
SSV
SSZ
T5K
TN5
UHS
WUQ
XPP
YNT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
E3H
F2A
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c420t-32a68fe64d19fa0a1513de4f7662216b5dae16e2c0f19eb790942aa312e3a61c3
IEDL.DBID .~1
ISSN 0736-5853
IngestDate Fri Jul 25 03:50:26 EDT 2025
Wed Oct 01 03:34:10 EDT 2025
Thu Apr 24 23:11:38 EDT 2025
Fri Feb 23 02:15:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords E-learning
Curriculum sequencing
Learning object
Machine learning
Prerequisite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-32a68fe64d19fa0a1513de4f7662216b5dae16e2c0f19eb790942aa312e3a61c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0263-531X
OpenAccessLink http://hdl.handle.net/11590/321161
PQID 2076201107
PQPubID 2035449
PageCount 16
ParticipantIDs proquest_journals_2076201107
crossref_primary_10_1016_j_tele_2017_05_007
crossref_citationtrail_10_1016_j_tele_2017_05_007
elsevier_sciencedirect_doi_10_1016_j_tele_2017_05_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Telematics and informatics
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Smine, B., Faiz, R., Descls, J.P., 2012. Extracting relevant learning objects using a semantic annotation method. In: Education and e-Learning Innovations (ICEELI), 2012 International Conference on, 2012, pp. 1–6. doi
Jain, Pareek (b0105) 2013; 8
Learning Technology Standards Committee (LTSC) of the IEEE, 2002. Draft standard for learning technology – Learning Object Metadata, Tech. rep., IEEE Standards Department, New York (Jul. 2002). URL
Hornik, Stinchcombe, White (b0095) 1989; 2
Maedche, Pekar, Staab (b0130) 2003
Ponzetto, Strube (b0165) 2007
Talukdar, P.P., Cohen, W.W., 2012. Crowdsourced comprehension: Predicting prerequisite structure in wikipedia. In: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, Association for Computational Linguistics, Stroudsburg, PA, USA. pp. 307–315. URL
W. Project, 2016. Mediawiki, last visited on 31 August 2016. URL
DBpedia, 2016. Dbpedia, last visited on 31 August 2016. URL
Hasan, K.S., Ng, V., 2014. Automatic keyphrase extraction: A survey of the state of the art. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Baltimore, Maryland, 2014, pp. 1262–1273. URL
Cristianini, Shawe-Taylor (b0045) 2000
Smine, Faiz, Descls (b0190) 2011; 9
Baeza-Yates, Ribeiro-Neto (b0015) 2008
Dharinya, Jayanthi (b0055) 2013; 27
Liu, Nocedal (b0120) 1989; 45
Chen (b0035) 2008; 51
Brusilovsky, Peylo (b0030) 2003; 13
Scheines, R., Silver, E., Goldin, I., 2014. Discovering prerequisite relationships among knowledge components, in: Stamper, J., Pardos, Z., Mavrikis, M., McLaren, B. (Eds.), Proceedings of the 7th International Conference on Educational Data Mining, ELRA, 2014, pp. 355–356.
.
Mitchell (b0160) 1997
McGreal, R., 2004. Online Education Using Learning Objects, Routledge, New York, NY, 10001.
Vuong, A., Nixon, T., Towle, B. 2011. A method for finding prerequisites within a curriculum. in: Pechenizkiy, M., Calders, T., Conati, C., Ventura, S., Romero, C., Stamper, J.J. (Eds.), The 4th International Conference on Educational Data Mining (EDM 2011), pp. 211–216.
Mahdisoltani, F., Biega, J., Suchanek, F., 2014. Yago3: A knowledge base from multilingual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research, CIDR 2015.
Liang, C., Wu, Z., Huang, W., Giles, C.L., 2015. Measuring prerequisite relations among concepts. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal, 2015, pp. 1668–1674. URL
Yang, Y., Liu, H., Carbonell, J., Ma, W., 2015. Concept graph learning from educational data. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15, ACM, New York, NY, USA, 2015, pp. 159–168. doi
Gasparetti, F., Limongelli, C., Sciarrone, F. 2015. Exploiting wikipedia for discovering prerequisite relationships among learning objects. In: 2015 International Conference on Information Technology Based Higher Education and Training (ITHET), 2015, pp. 1–6. doi
IMS Global Learning Consortium, 2016. Learning resource meta-data specification, last visited on 31 August 2016. URL
Gasparetti, F., Limongelli, C., Sciarrone, F., 2015. Exploiting wikipedia for discovering prerequisite relationships among learning objects. In: 2015 International Conference on Information Technology Based Higher Education and Training, ITHET 2015, Lisbon, Portugal, June 11–13, 2015, IEEE, 2015, pp. 1–6. doi
Bishop (b0025) 2006
Roy, Sarkar, Ghose (b0175) 2008; 18
I. Udacity, 2016. Udacity, last visited on 31 August 2016. URL
Miranda, Ritrovato (b0150) 2015; 11
R.T. University, 2016. Lm2016 dataset, last visited on 31 August 2016. URL
Zhao, Zhang (b0235) 2008; 41
URL
Miller (b0145) 1995; 38
edX Inc., 2016. Open edx, last visited on 31 August 2016. URL
Ferragina, Scaiella (b0065) 2012; 29
Banko, M., Etzioni, O., 2007. Strategies for lifelong knowledge extraction from the web. In: Proceedings of the 4th International Conference on Knowledge Capture, K-CAP ’07, ACM, New York, NY, USA, 2007, pp. 95–102. doi
Lenat (b0110) 1995; 38
Miranda, S., Ritrovato, P., 2014. Automatic extraction of metadata from learning objects. In: International Conference on Intelligent Networking and Collaborative Systems (INCoS), 2014. pp. 704–709. doi
Gruber (b0085) 1993; 5
Amazon.com, 2016. Mechanical turk, last visited on 31 August 2016. URL
Furnas, Landauer, Gomez, Dumais (b0070) 1987; 30
Wikimedia Foundation, 2016. Wikipedia, last visited on 31 August 2016. URL
Cleverdon (b0040) 1997
Reeve, L., Han, H., 2005. Survey of semantic annotation platforms. In: Proc. 2005 ACM Symposium on Applied Computing, SAC’05, ACM, New York, NY, USA, 2005, pp. 1634–1638. doi
Toutanova, K., Klein, D., Manning, C.D., Singer, Y., 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology – Volume 1, NAACL ’03, Association for Computational Linguistics, Stroudsburg, PA, USA, 2003, pp. 173–180. doi
ASIS&T, 2016. Dublic core, last visited on 31 August 2016. URL
Gruber (10.1016/j.tele.2017.05.007_b0085) 1993; 5
Mitchell (10.1016/j.tele.2017.05.007_b0160) 1997
Ponzetto (10.1016/j.tele.2017.05.007_b0165) 2007
Bishop (10.1016/j.tele.2017.05.007_b0025) 2006
Liu (10.1016/j.tele.2017.05.007_b0120) 1989; 45
Roy (10.1016/j.tele.2017.05.007_b0175) 2008; 18
10.1016/j.tele.2017.05.007_b0080
10.1016/j.tele.2017.05.007_b0180
10.1016/j.tele.2017.05.007_b0060
10.1016/j.tele.2017.05.007_b0220
10.1016/j.tele.2017.05.007_b0140
10.1016/j.tele.2017.05.007_b0020
Jain (10.1016/j.tele.2017.05.007_b0105) 2013; 8
10.1016/j.tele.2017.05.007_b0185
Ferragina (10.1016/j.tele.2017.05.007_b0065) 2012; 29
10.1016/j.tele.2017.05.007_b0125
10.1016/j.tele.2017.05.007_b0100
Furnas (10.1016/j.tele.2017.05.007_b0070) 1987; 30
10.1016/j.tele.2017.05.007_b0200
10.1016/j.tele.2017.05.007_b0205
10.1016/j.tele.2017.05.007_b0005
10.1016/j.tele.2017.05.007_b0225
Chen (10.1016/j.tele.2017.05.007_b0035) 2008; 51
Hornik (10.1016/j.tele.2017.05.007_b0095) 1989; 2
Miranda (10.1016/j.tele.2017.05.007_b0150) 2015; 11
Lenat (10.1016/j.tele.2017.05.007_b0110) 1995; 38
Baeza-Yates (10.1016/j.tele.2017.05.007_b0015) 2008
Maedche (10.1016/j.tele.2017.05.007_b0130) 2003
Miller (10.1016/j.tele.2017.05.007_b0145) 1995; 38
Cleverdon (10.1016/j.tele.2017.05.007_b0040) 1997
10.1016/j.tele.2017.05.007_b0090
Zhao (10.1016/j.tele.2017.05.007_b0235) 2008; 41
10.1016/j.tele.2017.05.007_b0050
10.1016/j.tele.2017.05.007_b0170
10.1016/j.tele.2017.05.007_b0010
Brusilovsky (10.1016/j.tele.2017.05.007_b0030) 2003; 13
10.1016/j.tele.2017.05.007_b0230
10.1016/j.tele.2017.05.007_b0195
10.1016/j.tele.2017.05.007_b0075
Cristianini (10.1016/j.tele.2017.05.007_b0045) 2000
10.1016/j.tele.2017.05.007_b0135
10.1016/j.tele.2017.05.007_b0155
10.1016/j.tele.2017.05.007_b0210
Dharinya (10.1016/j.tele.2017.05.007_b0055) 2013; 27
10.1016/j.tele.2017.05.007_b0115
Smine (10.1016/j.tele.2017.05.007_b0190) 2011; 9
10.1016/j.tele.2017.05.007_b0215
References_xml – year: 1997
  ident: b0160
  article-title: Machine Learning
– volume: 38
  start-page: 33
  year: 1995
  end-page: 38
  ident: b0110
  article-title: Cyc: a large-scale investment in knowledge infrastructure
  publication-title: Commun. ACM
– reference: Gasparetti, F., Limongelli, C., Sciarrone, F. 2015. Exploiting wikipedia for discovering prerequisite relationships among learning objects. In: 2015 International Conference on Information Technology Based Higher Education and Training (ITHET), 2015, pp. 1–6. doi:
– volume: 13
  start-page: 159
  year: 2003
  end-page: 172
  ident: b0030
  article-title: Adaptive and intelligent web-based educational systems
  publication-title: Int. J. Artif. Intell. Ed.
– start-page: 1440
  year: 2007
  end-page: 1445
  ident: b0165
  article-title: Deriving a large scale taxonomy from wikipedia
  publication-title: Proceedings of the 22Nd National Conference on Artificial Intelligence – Volume 2, AAAI’07
– volume: 41
  start-page: 1955
  year: 2008
  end-page: 1959
  ident: b0235
  article-title: Comparison of decision tree methods for finding active objects
  publication-title: Adv. Space Res.
– start-page: 47
  year: 1997
  end-page: 59
  ident: b0040
  article-title: The cranfield tests on index language devices
  publication-title: Readings in Information Retrieval
– reference: Scheines, R., Silver, E., Goldin, I., 2014. Discovering prerequisite relationships among knowledge components, in: Stamper, J., Pardos, Z., Mavrikis, M., McLaren, B. (Eds.), Proceedings of the 7th International Conference on Educational Data Mining, ELRA, 2014, pp. 355–356.
– reference: ASIS&T, 2016. Dublic core, last visited on 31 August 2016. URL
– reference: I. Udacity, 2016. Udacity, last visited on 31 August 2016. URL
– volume: 11
  year: 2015
  ident: b0150
  article-title: Supporting learning object repository by automatic extraction of metadata
  publication-title: J. e-Learning Knowl. Soc.
– reference: R.T. University, 2016. Lm2016 dataset, last visited on 31 August 2016. URL
– reference: IMS Global Learning Consortium, 2016. Learning resource meta-data specification, last visited on 31 August 2016. URL
– volume: 5
  start-page: 199
  year: 1993
  end-page: 220
  ident: b0085
  article-title: A translation approach to portable ontology specifications
  publication-title: Knowl. Acquis.
– reference: Reeve, L., Han, H., 2005. Survey of semantic annotation platforms. In: Proc. 2005 ACM Symposium on Applied Computing, SAC’05, ACM, New York, NY, USA, 2005, pp. 1634–1638. doi:
– reference: Hasan, K.S., Ng, V., 2014. Automatic keyphrase extraction: A survey of the state of the art. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Baltimore, Maryland, 2014, pp. 1262–1273. URL
– volume: 38
  start-page: 39
  year: 1995
  end-page: 41
  ident: b0145
  article-title: Wordnet: a lexical database for english
  publication-title: Commun. ACM
– reference: Banko, M., Etzioni, O., 2007. Strategies for lifelong knowledge extraction from the web. In: Proceedings of the 4th International Conference on Knowledge Capture, K-CAP ’07, ACM, New York, NY, USA, 2007, pp. 95–102. doi:
– volume: 30
  start-page: 964
  year: 1987
  end-page: 971
  ident: b0070
  article-title: The vocabulary problem in human-system communication
  publication-title: Commun. ACM
– reference: Gasparetti, F., Limongelli, C., Sciarrone, F., 2015. Exploiting wikipedia for discovering prerequisite relationships among learning objects. In: 2015 International Conference on Information Technology Based Higher Education and Training, ITHET 2015, Lisbon, Portugal, June 11–13, 2015, IEEE, 2015, pp. 1–6. doi:
– reference: Yang, Y., Liu, H., Carbonell, J., Ma, W., 2015. Concept graph learning from educational data. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15, ACM, New York, NY, USA, 2015, pp. 159–168. doi:
– reference: Talukdar, P.P., Cohen, W.W., 2012. Crowdsourced comprehension: Predicting prerequisite structure in wikipedia. In: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, Association for Computational Linguistics, Stroudsburg, PA, USA. pp. 307–315. URL
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b0120
  article-title: On the limited memory bfgs method for large scale optimization
  publication-title: Math. Program.
– reference: Vuong, A., Nixon, T., Towle, B. 2011. A method for finding prerequisites within a curriculum. in: Pechenizkiy, M., Calders, T., Conati, C., Ventura, S., Romero, C., Stamper, J.J. (Eds.), The 4th International Conference on Educational Data Mining (EDM 2011), pp. 211–216.
– reference: McGreal, R., 2004. Online Education Using Learning Objects, Routledge, New York, NY, 10001.
– volume: 51
  start-page: 787
  year: 2008
  end-page: 814
  ident: b0035
  article-title: Intelligent web-based learning system with personalized learning path guidance
  publication-title: Comput. Educ.
– reference: Mahdisoltani, F., Biega, J., Suchanek, F., 2014. Yago3: A knowledge base from multilingual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research, CIDR 2015.
– reference: edX Inc., 2016. Open edx, last visited on 31 August 2016. URL
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b0095
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– reference: URL
– volume: 18
  start-page: 97
  year: 2008
  end-page: 118
  ident: b0175
  article-title: Automatic extraction of pedagogic metadata from learning content
  publication-title: Int. J. Artif. Intell. Ed.
– volume: 8
  start-page: 145
  year: 2013
  end-page: 154
  ident: b0105
  article-title: Automatic extraction of prerequisites and learning outcome from learning material
  publication-title: Int. J. Metadata Semant. Ontologies
– reference: W. Project, 2016. Mediawiki, last visited on 31 August 2016. URL
– reference: Miranda, S., Ritrovato, P., 2014. Automatic extraction of metadata from learning objects. In: International Conference on Intelligent Networking and Collaborative Systems (INCoS), 2014. pp. 704–709. doi:
– reference: Smine, B., Faiz, R., Descls, J.P., 2012. Extracting relevant learning objects using a semantic annotation method. In: Education and e-Learning Innovations (ICEELI), 2012 International Conference on, 2012, pp. 1–6. doi:
– volume: 27
  start-page: 123
  year: 2013
  end-page: 129
  ident: b0055
  article-title: Effective retrieval of text and media learning objects using automatic annotation
  publication-title: World Appl. Sci. J.
– reference: DBpedia, 2016. Dbpedia, last visited on 31 August 2016. URL
– reference: , URL
– volume: 9
  start-page: 159
  year: 2011
  end-page: 166
  ident: b0190
  article-title: A semantic annotation model for indexing and retrieving learning objects
  publication-title: J. Digital Inf. Manage.
– reference: .
– reference: Toutanova, K., Klein, D., Manning, C.D., Singer, Y., 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology – Volume 1, NAACL ’03, Association for Computational Linguistics, Stroudsburg, PA, USA, 2003, pp. 173–180. doi:
– year: 2008
  ident: b0015
  article-title: Modern Information Retrieval
– volume: 29
  start-page: 70
  year: 2012
  end-page: 75
  ident: b0065
  article-title: Fast and accurate annotation of short texts with wikipedia pages
  publication-title: IEEE Softw.
– reference: Amazon.com, 2016. Mechanical turk, last visited on 31 August 2016. URL
– year: 2006
  ident: b0025
  article-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
– year: 2000
  ident: b0045
  article-title: An Introduction to Support Vector Machines: and Other Kernel-based Learning Methods
– reference: Liang, C., Wu, Z., Huang, W., Giles, C.L., 2015. Measuring prerequisite relations among concepts. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal, 2015, pp. 1668–1674. URL
– reference: Learning Technology Standards Committee (LTSC) of the IEEE, 2002. Draft standard for learning technology – Learning Object Metadata, Tech. rep., IEEE Standards Department, New York (Jul. 2002). URL
– reference: Wikimedia Foundation, 2016. Wikipedia, last visited on 31 August 2016. URL
– start-page: 301
  year: 2003
  end-page: 319
  ident: b0130
  article-title: Ontology learning part one — on discovering taxonomic relations from the web
  publication-title: Web Intelligence
– volume: 30
  start-page: 964
  issue: 11
  year: 1987
  ident: 10.1016/j.tele.2017.05.007_b0070
  article-title: The vocabulary problem in human-system communication
  publication-title: Commun. ACM
  doi: 10.1145/32206.32212
– ident: 10.1016/j.tele.2017.05.007_b0185
– ident: 10.1016/j.tele.2017.05.007_b0135
– ident: 10.1016/j.tele.2017.05.007_b0005
– ident: 10.1016/j.tele.2017.05.007_b0090
  doi: 10.3115/v1/P14-1119
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.tele.2017.05.007_b0095
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: 10.1016/j.tele.2017.05.007_b0170
  doi: 10.1145/1066677.1067049
– ident: 10.1016/j.tele.2017.05.007_b0200
– ident: 10.1016/j.tele.2017.05.007_b0225
– volume: 8
  start-page: 145
  issue: 2
  year: 2013
  ident: 10.1016/j.tele.2017.05.007_b0105
  article-title: Automatic extraction of prerequisites and learning outcome from learning material
  publication-title: Int. J. Metadata Semant. Ontologies
  doi: 10.1504/IJMSO.2013.056601
– start-page: 47
  year: 1997
  ident: 10.1016/j.tele.2017.05.007_b0040
  article-title: The cranfield tests on index language devices
– volume: 18
  start-page: 97
  issue: 2
  year: 2008
  ident: 10.1016/j.tele.2017.05.007_b0175
  article-title: Automatic extraction of pedagogic metadata from learning content
  publication-title: Int. J. Artif. Intell. Ed.
– year: 2006
  ident: 10.1016/j.tele.2017.05.007_b0025
– volume: 5
  start-page: 199
  issue: 2
  year: 1993
  ident: 10.1016/j.tele.2017.05.007_b0085
  article-title: A translation approach to portable ontology specifications
  publication-title: Knowl. Acquis.
  doi: 10.1006/knac.1993.1008
– volume: 38
  start-page: 33
  issue: 11
  year: 1995
  ident: 10.1016/j.tele.2017.05.007_b0110
  article-title: Cyc: a large-scale investment in knowledge infrastructure
  publication-title: Commun. ACM
  doi: 10.1145/219717.219745
– ident: 10.1016/j.tele.2017.05.007_b0010
– ident: 10.1016/j.tele.2017.05.007_b0060
– ident: 10.1016/j.tele.2017.05.007_b0125
– ident: 10.1016/j.tele.2017.05.007_b0100
– volume: 11
  issue: 1
  year: 2015
  ident: 10.1016/j.tele.2017.05.007_b0150
  article-title: Supporting learning object repository by automatic extraction of metadata
  publication-title: J. e-Learning Knowl. Soc.
– ident: 10.1016/j.tele.2017.05.007_b0215
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 10.1016/j.tele.2017.05.007_b0145
  article-title: Wordnet: a lexical database for english
  publication-title: Commun. ACM
  doi: 10.1145/219717.219748
– ident: 10.1016/j.tele.2017.05.007_b0050
– ident: 10.1016/j.tele.2017.05.007_b0195
  doi: 10.1109/ICEELI.2012.6360568
– ident: 10.1016/j.tele.2017.05.007_b0075
  doi: 10.1109/ITHET.2015.7218038
– ident: 10.1016/j.tele.2017.05.007_b0115
  doi: 10.18653/v1/D15-1193
– year: 1997
  ident: 10.1016/j.tele.2017.05.007_b0160
– ident: 10.1016/j.tele.2017.05.007_b0180
– volume: 9
  start-page: 159
  issue: 4
  year: 2011
  ident: 10.1016/j.tele.2017.05.007_b0190
  article-title: A semantic annotation model for indexing and retrieving learning objects
  publication-title: J. Digital Inf. Manage.
– volume: 41
  start-page: 1955
  issue: 12
  year: 2008
  ident: 10.1016/j.tele.2017.05.007_b0235
  article-title: Comparison of decision tree methods for finding active objects
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2007.07.020
– year: 2008
  ident: 10.1016/j.tele.2017.05.007_b0015
– volume: 51
  start-page: 787
  issue: 2
  year: 2008
  ident: 10.1016/j.tele.2017.05.007_b0035
  article-title: Intelligent web-based learning system with personalized learning path guidance
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2007.08.004
– ident: 10.1016/j.tele.2017.05.007_b0220
– ident: 10.1016/j.tele.2017.05.007_b0140
  doi: 10.4324/9780203416082
– volume: 29
  start-page: 70
  issue: 1
  year: 2012
  ident: 10.1016/j.tele.2017.05.007_b0065
  article-title: Fast and accurate annotation of short texts with wikipedia pages
  publication-title: IEEE Softw.
  doi: 10.1109/MS.2011.122
– ident: 10.1016/j.tele.2017.05.007_b0020
  doi: 10.1145/1298406.1298425
– start-page: 301
  year: 2003
  ident: 10.1016/j.tele.2017.05.007_b0130
  article-title: Ontology learning part one — on discovering taxonomic relations from the web
– ident: 10.1016/j.tele.2017.05.007_b0080
  doi: 10.1109/ITHET.2015.7218038
– ident: 10.1016/j.tele.2017.05.007_b0155
  doi: 10.1109/INCoS.2014.100
– year: 2000
  ident: 10.1016/j.tele.2017.05.007_b0045
– volume: 13
  start-page: 159
  issue: 2–4
  year: 2003
  ident: 10.1016/j.tele.2017.05.007_b0030
  article-title: Adaptive and intelligent web-based educational systems
  publication-title: Int. J. Artif. Intell. Ed.
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 10.1016/j.tele.2017.05.007_b0120
  article-title: On the limited memory bfgs method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– ident: 10.1016/j.tele.2017.05.007_b0210
– ident: 10.1016/j.tele.2017.05.007_b0230
  doi: 10.1145/2684822.2685292
– volume: 27
  start-page: 123
  issue: 1
  year: 2013
  ident: 10.1016/j.tele.2017.05.007_b0055
  article-title: Effective retrieval of text and media learning objects using automatic annotation
  publication-title: World Appl. Sci. J.
– ident: 10.1016/j.tele.2017.05.007_b0205
  doi: 10.3115/1073445.1073478
– start-page: 1440
  year: 2007
  ident: 10.1016/j.tele.2017.05.007_b0165
  article-title: Deriving a large scale taxonomy from wikipedia
SSID ssj0017191
Score 2.377696
Snippet One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 595
SubjectTerms Algorithms
Artificial intelligence
Automation
CAI
Computer assisted instruction
Construction materials
Curriculum sequencing
Data analysis
Distance learning
E-learning
Feature extraction
Hypertext
Machine learning
Natural language processing
Object recognition
Online instruction
Prerequisite
Repositories
Taxonomy
Technological change
Title Prerequisites between learning objects: Automatic extraction based on a machine learning approach
URI https://dx.doi.org/10.1016/j.tele.2017.05.007
https://www.proquest.com/docview/2076201107
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-324X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017191
  issn: 0736-5853
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-324X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017191
  issn: 0736-5853
  databaseCode: ACRLP
  dateStart: 19951201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-324X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017191
  issn: 0736-5853
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1879-324X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017191
  issn: 0736-5853
  databaseCode: AIKHN
  dateStart: 19951201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-324X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017191
  issn: 0736-5853
  databaseCode: AKRWK
  dateStart: 19941201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4mOAAHBAPEWzlwQ2VJmqYttwmBBhMI8RDcoqR10RBssHVXfjtOm_IS4sCpr6SqHNef3dqfCdmTObCwKNIAIpYHkgME1mZJEOdpaiPIElbRLp5fqN6tPLuP7lvkqKmFcWmV3vbXNr2y1v5Mx0uz8zIYdK5RORE-UYcUhuRJ6uJ2x_6FOn3w9pHmwWNed83DwYEb7Qtn6hyvEk27S--q2TtdS9nfwemHma6w52SJLHqnkXbr51omLRi2yVxTUzxpk4UvtIIrxFyOYQyv04H7MzyhPhWL-gYRD3Rk3ceXySHtTstRRdlK0USP6xIH6nAtp7hj6HOVaQmfMxsG8lVye3J8c9QLfCuFIJOClUEojEoKUDLnaWGYQZwPc5BFrJQQXNkoN8AViIwVPAUbpxj1CWNCLiA0imfhGpkZjoawTii6BCAEs8wUIC2XNpUm4S5wwmVFxN0gvJGhzjzPuGt38aSbhLJH7eSundw1izTKfYPsf8x5qVk2_hwdNUujv-mKRhj4c952s47av6kTvI5w4JygePOft90i83iU1Plj22SmHE9hBz2V0u5WqrhLZrun_d6F2_av7vrv077qXw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-h9gF4QIyB6AabH_aGotqO4yR7qypQGVAhARJvlp1cUNHWsjb9_zknDoNp4mFvUeyLorvL_e7i-wD4pkrkcVXlESa8jJRAjJwrsigt89wlWGS8abt4NdWTO_XjPrnfgHFXC-PTKoPtb216Y63DnWHg5vBpNhvekHISfJIOaQrJs5zi9r5KyCb3oD86v5hMXw4TUtEOzqP9kScItTNtmldN1t1neLUNPP1U2X_j01-WuoGfs13YCX4jG7Wv9gE2cL4Hm11Z8WoPtl91FvwI9nqJS_y9nvnD4RUL2VgszIh4YAvn_7-svrPRul40XVsZWellW-XAPLSVjC4s-9UkW-Ifyq4J-T7cnZ3ejidRmKYQFUryOoql1VmFWpUiryy3BPVxiapKtZZSaJeUFoVGWfBK5OjSnAI_aW0sJMZWiyI-gN58McdDYOQVoJTccVuhckK5XNlM-NiJJEugOwDR8dAUodW4n3jx03Q5ZY_G8914vhueGOL7AE5eaJ7aRhvv7k460Zg36mIICd6lO-rkaMLHuqJ1QgTvB6Wf_vOxX2Fzcnt1aS7PpxefYYtWsjad7Ah69XKNx-S41O5LUMxnd-3rZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prerequisites+between+learning+objects%3A+Automatic+extraction+based+on+a+machine+learning+approach&rft.jtitle=Telematics+and+informatics&rft.au=Gasparetti%2C+Fabio&rft.au=De+Medio%2C+Carlo&rft.au=Limongelli%2C+Carla&rft.au=Sciarrone%2C+Filippo&rft.date=2018-06-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5853&rft.eissn=1879-324X&rft.volume=35&rft.issue=3&rft.spage=595&rft.epage=610&rft_id=info:doi/10.1016%2Fj.tele.2017.05.007&rft.externalDocID=S0736585316304890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5853&client=summon