Prerequisites between learning objects: Automatic extraction based on a machine learning approach
One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials, appropriate for their educational purposes. Learning materials can be retrieved from structured repositories, such as repositories of Learnin...
Saved in:
Published in | Telematics and informatics Vol. 35; no. 3; pp. 595 - 610 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0736-5853 1879-324X |
DOI | 10.1016/j.tele.2017.05.007 |
Cover
Abstract | One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials, appropriate for their educational purposes. Learning materials can be retrieved from structured repositories, such as repositories of Learning Objects and Massive Open Online Courses; they could also come from unstructured sources, such as web hypertext pages. Platforms for distance education often implement algorithms for recommending specific educational resources and personalized learning paths to students. But choosing and sequencing the adequate learning materials to build adaptive courses may reveal to be quite a challenging task.
In particular, establishing the prerequisite relationships among learning objects, in terms of prior requirements needed to understand and complete before making use of the subsequent contents, is a crucial step for faculty, instructional designers or automated systems whose goal is to adapt existing learning objects to delivery in new distance courses. Nevertheless, this information is often missing. In this paper, an innovative machine learning-based approach for the identification of prerequisites between text-based resources is proposed. A feature selection methodology allows us to consider the attributes that are most relevant to the predictive modeling problem. These features are extracted from both the input material and weak-taxonomies available on the web. Input data undergoes a Natural language process that makes finding patterns of interest more easy for the applied automated analysis. Finally, the prerequisite identification is cast to a binary statistical classification task. The accuracy of the approach is validated by means of experimental evaluations on real online coursers covering different subjects. |
---|---|
AbstractList | One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials, appropriate for their educational purposes. Learning materials can be retrieved from structured repositories, such as repositories of Learning Objects and Massive Open Online Courses; they could also come from unstructured sources, such as web hypertext pages. Platforms for distance education often implement algorithms for recommending specific educational resources and personalized learning paths to students. But choosing and sequencing the adequate learning materials to build adaptive courses may reveal to be quite a challenging task. In particular, establishing the prerequisite relationships among learning objects, in terms of prior requirements needed to understand and complete before making use of the subsequent contents, is a crucial step for faculty, instructional designers or automated systems whose goal is to adapt existing learning objects to delivery in new distance courses. Nevertheless, this information is often missing. In this paper, an innovative machine learning-based approach for the identification of prerequisites between text-based resources is proposed. A feature selection methodology allows us to consider the attributes that are most relevant to the predictive modeling problem. These features are extracted from both the input material and weak-taxonomies available on the web. Input data undergoes a Natural language process that makes finding patterns of interest more easy for the applied automated analysis. Finally, the prerequisite identification is cast to a binary statistical classification task. The accuracy of the approach is validated by means of experimental evaluations on real online coursers covering different subjects. One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials, appropriate for their educational purposes. Learning materials can be retrieved from structured repositories, such as repositories of Learning Objects and Massive Open Online Courses; they could also come from unstructured sources, such as web hypertext pages. Platforms for distance education often implement algorithms for recommending specific educational resources and personalized learning paths to students. But choosing and sequencing the adequate learning materials to build adaptive courses may reveal to be quite a challenging task. In particular, establishing the prerequisite relationships among learning objects, in terms of prior requirements needed to understand and complete before making use of the subsequent contents, is a crucial step for faculty, instructional designers or automated systems whose goal is to adapt existing learning objects to delivery in new distance courses. Nevertheless, this information is often missing. In this paper, an innovative machine learning-based approach for the identification of prerequisites between text-based resources is proposed. A feature selection methodology allows us to consider the attributes that are most relevant to the predictive modeling problem. These features are extracted from both the input material and weak-taxonomies available on the web. Input data undergoes a Natural language process that makes finding patterns of interest more easy for the applied automated analysis. Finally, the prerequisite identification is cast to a binary statistical classification task. The accuracy of the approach is validated by means of experimental evaluations on real online coursers covering different subjects. |
Author | De Medio, Carlo Limongelli, Carla Temperini, Marco Gasparetti, Fabio Sciarrone, Filippo |
Author_xml | – sequence: 1 givenname: Fabio orcidid: 0000-0003-0263-531X surname: Gasparetti fullname: Gasparetti, Fabio email: gaspare@dia.uniroma3.it organization: Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy – sequence: 2 givenname: Carlo surname: De Medio fullname: De Medio, Carlo email: carlo.demedio@uniroma3.it organization: Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy – sequence: 3 givenname: Carla surname: Limongelli fullname: Limongelli, Carla email: limongel@dia.uniroma3.it organization: Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy – sequence: 4 givenname: Filippo surname: Sciarrone fullname: Sciarrone, Filippo email: sciarro@dia.uniroma3.it organization: Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy – sequence: 5 givenname: Marco surname: Temperini fullname: Temperini, Marco email: marte@dis.uniroma1.it organization: Sapienza University, Via Ariosto, 25, 00184 Rome, Italy |
BookMark | eNp9kEtLAzEQgINUsK3-AU8LnrtmsrvZrngpxRcU9KDgLcxmZzVLm22T1Me_N7WC4MHTDMN88_hGbGB7S4ydAk-Bgzzv0kBLSgWHMuVFynl5wIYwLatJJvLnARvyMpOTYlpkR2zkfcdjI1QwZPjgyNFma7wJ5JOawjuRTZaEzhr7kvR1Rzr4i2S2Df0Kg9EJfQSHOpjeJjV6apKYYLJC_Wos_ZK4Xrs-Fo_ZYYtLTyc_ccyerq8e57eTxf3N3Xy2mOhc8BDvRDltSeYNVC1yhAKyhvK2lFIIkHXRIIEkoXkLFdVlxatcIGYgKEMJOhuzs_3cuHazJR9U12-djSuV4KWMaiBKGDOx79Ku995Rq9bOrNB9KuBqp1J1aqdS7VQqXij-DU3_QNoE3BmIJszyf_Ryj1J8_c2QU14bspoa46JY1fTmP_wLxq-SrQ |
CitedBy_id | crossref_primary_10_1111_bjet_13158 crossref_primary_10_1371_journal_pone_0308607 crossref_primary_10_1186_s40561_019_0104_3 crossref_primary_10_1007_s11277_022_09812_w crossref_primary_10_1142_S0218194022400034 crossref_primary_10_15178_va_2021_154_e1224 crossref_primary_10_2196_54443 crossref_primary_10_1007_s10639_022_10966_0 crossref_primary_10_3390_e23060668 crossref_primary_10_1109_ACCESS_2019_2910079 crossref_primary_10_1016_j_future_2021_08_021 crossref_primary_10_1109_ACCESS_2022_3194063 crossref_primary_10_1007_s12065_022_00706_1 crossref_primary_10_1109_TLT_2022_3193751 crossref_primary_10_1002_asi_24992 crossref_primary_10_4018_IJSWIS_2019040105 crossref_primary_10_1186_s40561_024_00301_0 crossref_primary_10_1007_s11036_018_1130_z crossref_primary_10_1155_2021_7655462 crossref_primary_10_1109_TE_2021_3128019 crossref_primary_10_1007_s10758_023_09682_6 crossref_primary_10_3390_informatics11020029 crossref_primary_10_1155_2021_3510402 |
Cites_doi | 10.1145/32206.32212 10.3115/v1/P14-1119 10.1016/0893-6080(89)90020-8 10.1145/1066677.1067049 10.1504/IJMSO.2013.056601 10.1006/knac.1993.1008 10.1145/219717.219745 10.1145/219717.219748 10.1109/ICEELI.2012.6360568 10.1109/ITHET.2015.7218038 10.18653/v1/D15-1193 10.1016/j.asr.2007.07.020 10.1016/j.compedu.2007.08.004 10.4324/9780203416082 10.1109/MS.2011.122 10.1145/1298406.1298425 10.1109/INCoS.2014.100 10.1007/BF01589116 10.1145/2684822.2685292 10.3115/1073445.1073478 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier Science Ltd. Jun 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jun 2018 |
DBID | AAYXX CITATION 7SC 7SP 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.tele.2017.05.007 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-324X |
EndPage | 610 |
ExternalDocumentID | 10_1016_j_tele_2017_05_007 S0736585316304890 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN 9JO AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABJNI ABMAC ABMMH ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADIYS ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSB SSO SSV SSZ T5K TN5 UHS WUQ XPP YNT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS E3H F2A JQ2 L7M L~C L~D SSH |
ID | FETCH-LOGICAL-c420t-32a68fe64d19fa0a1513de4f7662216b5dae16e2c0f19eb790942aa312e3a61c3 |
IEDL.DBID | .~1 |
ISSN | 0736-5853 |
IngestDate | Fri Jul 25 03:50:26 EDT 2025 Wed Oct 01 03:34:10 EDT 2025 Thu Apr 24 23:11:38 EDT 2025 Fri Feb 23 02:15:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | E-learning Curriculum sequencing Learning object Machine learning Prerequisite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-32a68fe64d19fa0a1513de4f7662216b5dae16e2c0f19eb790942aa312e3a61c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0263-531X |
OpenAccessLink | http://hdl.handle.net/11590/321161 |
PQID | 2076201107 |
PQPubID | 2035449 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2076201107 crossref_primary_10_1016_j_tele_2017_05_007 crossref_citationtrail_10_1016_j_tele_2017_05_007 elsevier_sciencedirect_doi_10_1016_j_tele_2017_05_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Telematics and informatics |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Smine, B., Faiz, R., Descls, J.P., 2012. Extracting relevant learning objects using a semantic annotation method. In: Education and e-Learning Innovations (ICEELI), 2012 International Conference on, 2012, pp. 1–6. doi Jain, Pareek (b0105) 2013; 8 Learning Technology Standards Committee (LTSC) of the IEEE, 2002. Draft standard for learning technology – Learning Object Metadata, Tech. rep., IEEE Standards Department, New York (Jul. 2002). URL Hornik, Stinchcombe, White (b0095) 1989; 2 Maedche, Pekar, Staab (b0130) 2003 Ponzetto, Strube (b0165) 2007 Talukdar, P.P., Cohen, W.W., 2012. Crowdsourced comprehension: Predicting prerequisite structure in wikipedia. In: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, Association for Computational Linguistics, Stroudsburg, PA, USA. pp. 307–315. URL W. Project, 2016. Mediawiki, last visited on 31 August 2016. URL DBpedia, 2016. Dbpedia, last visited on 31 August 2016. URL Hasan, K.S., Ng, V., 2014. Automatic keyphrase extraction: A survey of the state of the art. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Baltimore, Maryland, 2014, pp. 1262–1273. URL Cristianini, Shawe-Taylor (b0045) 2000 Smine, Faiz, Descls (b0190) 2011; 9 Baeza-Yates, Ribeiro-Neto (b0015) 2008 Dharinya, Jayanthi (b0055) 2013; 27 Liu, Nocedal (b0120) 1989; 45 Chen (b0035) 2008; 51 Brusilovsky, Peylo (b0030) 2003; 13 Scheines, R., Silver, E., Goldin, I., 2014. Discovering prerequisite relationships among knowledge components, in: Stamper, J., Pardos, Z., Mavrikis, M., McLaren, B. (Eds.), Proceedings of the 7th International Conference on Educational Data Mining, ELRA, 2014, pp. 355–356. . Mitchell (b0160) 1997 McGreal, R., 2004. Online Education Using Learning Objects, Routledge, New York, NY, 10001. Vuong, A., Nixon, T., Towle, B. 2011. A method for finding prerequisites within a curriculum. in: Pechenizkiy, M., Calders, T., Conati, C., Ventura, S., Romero, C., Stamper, J.J. (Eds.), The 4th International Conference on Educational Data Mining (EDM 2011), pp. 211–216. Mahdisoltani, F., Biega, J., Suchanek, F., 2014. Yago3: A knowledge base from multilingual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research, CIDR 2015. Liang, C., Wu, Z., Huang, W., Giles, C.L., 2015. Measuring prerequisite relations among concepts. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal, 2015, pp. 1668–1674. URL Yang, Y., Liu, H., Carbonell, J., Ma, W., 2015. Concept graph learning from educational data. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15, ACM, New York, NY, USA, 2015, pp. 159–168. doi Gasparetti, F., Limongelli, C., Sciarrone, F. 2015. Exploiting wikipedia for discovering prerequisite relationships among learning objects. In: 2015 International Conference on Information Technology Based Higher Education and Training (ITHET), 2015, pp. 1–6. doi IMS Global Learning Consortium, 2016. Learning resource meta-data specification, last visited on 31 August 2016. URL Gasparetti, F., Limongelli, C., Sciarrone, F., 2015. Exploiting wikipedia for discovering prerequisite relationships among learning objects. In: 2015 International Conference on Information Technology Based Higher Education and Training, ITHET 2015, Lisbon, Portugal, June 11–13, 2015, IEEE, 2015, pp. 1–6. doi Bishop (b0025) 2006 Roy, Sarkar, Ghose (b0175) 2008; 18 I. Udacity, 2016. Udacity, last visited on 31 August 2016. URL Miranda, Ritrovato (b0150) 2015; 11 R.T. University, 2016. Lm2016 dataset, last visited on 31 August 2016. URL Zhao, Zhang (b0235) 2008; 41 URL Miller (b0145) 1995; 38 edX Inc., 2016. Open edx, last visited on 31 August 2016. URL Ferragina, Scaiella (b0065) 2012; 29 Banko, M., Etzioni, O., 2007. Strategies for lifelong knowledge extraction from the web. In: Proceedings of the 4th International Conference on Knowledge Capture, K-CAP ’07, ACM, New York, NY, USA, 2007, pp. 95–102. doi Lenat (b0110) 1995; 38 Miranda, S., Ritrovato, P., 2014. Automatic extraction of metadata from learning objects. In: International Conference on Intelligent Networking and Collaborative Systems (INCoS), 2014. pp. 704–709. doi Gruber (b0085) 1993; 5 Amazon.com, 2016. Mechanical turk, last visited on 31 August 2016. URL Furnas, Landauer, Gomez, Dumais (b0070) 1987; 30 Wikimedia Foundation, 2016. Wikipedia, last visited on 31 August 2016. URL Cleverdon (b0040) 1997 Reeve, L., Han, H., 2005. Survey of semantic annotation platforms. In: Proc. 2005 ACM Symposium on Applied Computing, SAC’05, ACM, New York, NY, USA, 2005, pp. 1634–1638. doi Toutanova, K., Klein, D., Manning, C.D., Singer, Y., 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology – Volume 1, NAACL ’03, Association for Computational Linguistics, Stroudsburg, PA, USA, 2003, pp. 173–180. doi ASIS&T, 2016. Dublic core, last visited on 31 August 2016. URL Gruber (10.1016/j.tele.2017.05.007_b0085) 1993; 5 Mitchell (10.1016/j.tele.2017.05.007_b0160) 1997 Ponzetto (10.1016/j.tele.2017.05.007_b0165) 2007 Bishop (10.1016/j.tele.2017.05.007_b0025) 2006 Liu (10.1016/j.tele.2017.05.007_b0120) 1989; 45 Roy (10.1016/j.tele.2017.05.007_b0175) 2008; 18 10.1016/j.tele.2017.05.007_b0080 10.1016/j.tele.2017.05.007_b0180 10.1016/j.tele.2017.05.007_b0060 10.1016/j.tele.2017.05.007_b0220 10.1016/j.tele.2017.05.007_b0140 10.1016/j.tele.2017.05.007_b0020 Jain (10.1016/j.tele.2017.05.007_b0105) 2013; 8 10.1016/j.tele.2017.05.007_b0185 Ferragina (10.1016/j.tele.2017.05.007_b0065) 2012; 29 10.1016/j.tele.2017.05.007_b0125 10.1016/j.tele.2017.05.007_b0100 Furnas (10.1016/j.tele.2017.05.007_b0070) 1987; 30 10.1016/j.tele.2017.05.007_b0200 10.1016/j.tele.2017.05.007_b0205 10.1016/j.tele.2017.05.007_b0005 10.1016/j.tele.2017.05.007_b0225 Chen (10.1016/j.tele.2017.05.007_b0035) 2008; 51 Hornik (10.1016/j.tele.2017.05.007_b0095) 1989; 2 Miranda (10.1016/j.tele.2017.05.007_b0150) 2015; 11 Lenat (10.1016/j.tele.2017.05.007_b0110) 1995; 38 Baeza-Yates (10.1016/j.tele.2017.05.007_b0015) 2008 Maedche (10.1016/j.tele.2017.05.007_b0130) 2003 Miller (10.1016/j.tele.2017.05.007_b0145) 1995; 38 Cleverdon (10.1016/j.tele.2017.05.007_b0040) 1997 10.1016/j.tele.2017.05.007_b0090 Zhao (10.1016/j.tele.2017.05.007_b0235) 2008; 41 10.1016/j.tele.2017.05.007_b0050 10.1016/j.tele.2017.05.007_b0170 10.1016/j.tele.2017.05.007_b0010 Brusilovsky (10.1016/j.tele.2017.05.007_b0030) 2003; 13 10.1016/j.tele.2017.05.007_b0230 10.1016/j.tele.2017.05.007_b0195 10.1016/j.tele.2017.05.007_b0075 Cristianini (10.1016/j.tele.2017.05.007_b0045) 2000 10.1016/j.tele.2017.05.007_b0135 10.1016/j.tele.2017.05.007_b0155 10.1016/j.tele.2017.05.007_b0210 Dharinya (10.1016/j.tele.2017.05.007_b0055) 2013; 27 10.1016/j.tele.2017.05.007_b0115 Smine (10.1016/j.tele.2017.05.007_b0190) 2011; 9 10.1016/j.tele.2017.05.007_b0215 |
References_xml | – year: 1997 ident: b0160 article-title: Machine Learning – volume: 38 start-page: 33 year: 1995 end-page: 38 ident: b0110 article-title: Cyc: a large-scale investment in knowledge infrastructure publication-title: Commun. ACM – reference: Gasparetti, F., Limongelli, C., Sciarrone, F. 2015. Exploiting wikipedia for discovering prerequisite relationships among learning objects. In: 2015 International Conference on Information Technology Based Higher Education and Training (ITHET), 2015, pp. 1–6. doi: – volume: 13 start-page: 159 year: 2003 end-page: 172 ident: b0030 article-title: Adaptive and intelligent web-based educational systems publication-title: Int. J. Artif. Intell. Ed. – start-page: 1440 year: 2007 end-page: 1445 ident: b0165 article-title: Deriving a large scale taxonomy from wikipedia publication-title: Proceedings of the 22Nd National Conference on Artificial Intelligence – Volume 2, AAAI’07 – volume: 41 start-page: 1955 year: 2008 end-page: 1959 ident: b0235 article-title: Comparison of decision tree methods for finding active objects publication-title: Adv. Space Res. – start-page: 47 year: 1997 end-page: 59 ident: b0040 article-title: The cranfield tests on index language devices publication-title: Readings in Information Retrieval – reference: Scheines, R., Silver, E., Goldin, I., 2014. Discovering prerequisite relationships among knowledge components, in: Stamper, J., Pardos, Z., Mavrikis, M., McLaren, B. (Eds.), Proceedings of the 7th International Conference on Educational Data Mining, ELRA, 2014, pp. 355–356. – reference: ASIS&T, 2016. Dublic core, last visited on 31 August 2016. URL – reference: I. Udacity, 2016. Udacity, last visited on 31 August 2016. URL – volume: 11 year: 2015 ident: b0150 article-title: Supporting learning object repository by automatic extraction of metadata publication-title: J. e-Learning Knowl. Soc. – reference: R.T. University, 2016. Lm2016 dataset, last visited on 31 August 2016. URL – reference: IMS Global Learning Consortium, 2016. Learning resource meta-data specification, last visited on 31 August 2016. URL – volume: 5 start-page: 199 year: 1993 end-page: 220 ident: b0085 article-title: A translation approach to portable ontology specifications publication-title: Knowl. Acquis. – reference: Reeve, L., Han, H., 2005. Survey of semantic annotation platforms. In: Proc. 2005 ACM Symposium on Applied Computing, SAC’05, ACM, New York, NY, USA, 2005, pp. 1634–1638. doi: – reference: Hasan, K.S., Ng, V., 2014. Automatic keyphrase extraction: A survey of the state of the art. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Baltimore, Maryland, 2014, pp. 1262–1273. URL – volume: 38 start-page: 39 year: 1995 end-page: 41 ident: b0145 article-title: Wordnet: a lexical database for english publication-title: Commun. ACM – reference: Banko, M., Etzioni, O., 2007. Strategies for lifelong knowledge extraction from the web. In: Proceedings of the 4th International Conference on Knowledge Capture, K-CAP ’07, ACM, New York, NY, USA, 2007, pp. 95–102. doi: – volume: 30 start-page: 964 year: 1987 end-page: 971 ident: b0070 article-title: The vocabulary problem in human-system communication publication-title: Commun. ACM – reference: Gasparetti, F., Limongelli, C., Sciarrone, F., 2015. Exploiting wikipedia for discovering prerequisite relationships among learning objects. In: 2015 International Conference on Information Technology Based Higher Education and Training, ITHET 2015, Lisbon, Portugal, June 11–13, 2015, IEEE, 2015, pp. 1–6. doi: – reference: Yang, Y., Liu, H., Carbonell, J., Ma, W., 2015. Concept graph learning from educational data. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15, ACM, New York, NY, USA, 2015, pp. 159–168. doi: – reference: Talukdar, P.P., Cohen, W.W., 2012. Crowdsourced comprehension: Predicting prerequisite structure in wikipedia. In: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, Association for Computational Linguistics, Stroudsburg, PA, USA. pp. 307–315. URL – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: b0120 article-title: On the limited memory bfgs method for large scale optimization publication-title: Math. Program. – reference: Vuong, A., Nixon, T., Towle, B. 2011. A method for finding prerequisites within a curriculum. in: Pechenizkiy, M., Calders, T., Conati, C., Ventura, S., Romero, C., Stamper, J.J. (Eds.), The 4th International Conference on Educational Data Mining (EDM 2011), pp. 211–216. – reference: McGreal, R., 2004. Online Education Using Learning Objects, Routledge, New York, NY, 10001. – volume: 51 start-page: 787 year: 2008 end-page: 814 ident: b0035 article-title: Intelligent web-based learning system with personalized learning path guidance publication-title: Comput. Educ. – reference: Mahdisoltani, F., Biega, J., Suchanek, F., 2014. Yago3: A knowledge base from multilingual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research, CIDR 2015. – reference: edX Inc., 2016. Open edx, last visited on 31 August 2016. URL – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: b0095 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – reference: URL – volume: 18 start-page: 97 year: 2008 end-page: 118 ident: b0175 article-title: Automatic extraction of pedagogic metadata from learning content publication-title: Int. J. Artif. Intell. Ed. – volume: 8 start-page: 145 year: 2013 end-page: 154 ident: b0105 article-title: Automatic extraction of prerequisites and learning outcome from learning material publication-title: Int. J. Metadata Semant. Ontologies – reference: W. Project, 2016. Mediawiki, last visited on 31 August 2016. URL – reference: Miranda, S., Ritrovato, P., 2014. Automatic extraction of metadata from learning objects. In: International Conference on Intelligent Networking and Collaborative Systems (INCoS), 2014. pp. 704–709. doi: – reference: Smine, B., Faiz, R., Descls, J.P., 2012. Extracting relevant learning objects using a semantic annotation method. In: Education and e-Learning Innovations (ICEELI), 2012 International Conference on, 2012, pp. 1–6. doi: – volume: 27 start-page: 123 year: 2013 end-page: 129 ident: b0055 article-title: Effective retrieval of text and media learning objects using automatic annotation publication-title: World Appl. Sci. J. – reference: DBpedia, 2016. Dbpedia, last visited on 31 August 2016. URL – reference: , URL – volume: 9 start-page: 159 year: 2011 end-page: 166 ident: b0190 article-title: A semantic annotation model for indexing and retrieving learning objects publication-title: J. Digital Inf. Manage. – reference: . – reference: Toutanova, K., Klein, D., Manning, C.D., Singer, Y., 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology – Volume 1, NAACL ’03, Association for Computational Linguistics, Stroudsburg, PA, USA, 2003, pp. 173–180. doi: – year: 2008 ident: b0015 article-title: Modern Information Retrieval – volume: 29 start-page: 70 year: 2012 end-page: 75 ident: b0065 article-title: Fast and accurate annotation of short texts with wikipedia pages publication-title: IEEE Softw. – reference: Amazon.com, 2016. Mechanical turk, last visited on 31 August 2016. URL – year: 2006 ident: b0025 article-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – year: 2000 ident: b0045 article-title: An Introduction to Support Vector Machines: and Other Kernel-based Learning Methods – reference: Liang, C., Wu, Z., Huang, W., Giles, C.L., 2015. Measuring prerequisite relations among concepts. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal, 2015, pp. 1668–1674. URL – reference: Learning Technology Standards Committee (LTSC) of the IEEE, 2002. Draft standard for learning technology – Learning Object Metadata, Tech. rep., IEEE Standards Department, New York (Jul. 2002). URL – reference: Wikimedia Foundation, 2016. Wikipedia, last visited on 31 August 2016. URL – start-page: 301 year: 2003 end-page: 319 ident: b0130 article-title: Ontology learning part one — on discovering taxonomic relations from the web publication-title: Web Intelligence – volume: 30 start-page: 964 issue: 11 year: 1987 ident: 10.1016/j.tele.2017.05.007_b0070 article-title: The vocabulary problem in human-system communication publication-title: Commun. ACM doi: 10.1145/32206.32212 – ident: 10.1016/j.tele.2017.05.007_b0185 – ident: 10.1016/j.tele.2017.05.007_b0135 – ident: 10.1016/j.tele.2017.05.007_b0005 – ident: 10.1016/j.tele.2017.05.007_b0090 doi: 10.3115/v1/P14-1119 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.tele.2017.05.007_b0095 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: 10.1016/j.tele.2017.05.007_b0170 doi: 10.1145/1066677.1067049 – ident: 10.1016/j.tele.2017.05.007_b0200 – ident: 10.1016/j.tele.2017.05.007_b0225 – volume: 8 start-page: 145 issue: 2 year: 2013 ident: 10.1016/j.tele.2017.05.007_b0105 article-title: Automatic extraction of prerequisites and learning outcome from learning material publication-title: Int. J. Metadata Semant. Ontologies doi: 10.1504/IJMSO.2013.056601 – start-page: 47 year: 1997 ident: 10.1016/j.tele.2017.05.007_b0040 article-title: The cranfield tests on index language devices – volume: 18 start-page: 97 issue: 2 year: 2008 ident: 10.1016/j.tele.2017.05.007_b0175 article-title: Automatic extraction of pedagogic metadata from learning content publication-title: Int. J. Artif. Intell. Ed. – year: 2006 ident: 10.1016/j.tele.2017.05.007_b0025 – volume: 5 start-page: 199 issue: 2 year: 1993 ident: 10.1016/j.tele.2017.05.007_b0085 article-title: A translation approach to portable ontology specifications publication-title: Knowl. Acquis. doi: 10.1006/knac.1993.1008 – volume: 38 start-page: 33 issue: 11 year: 1995 ident: 10.1016/j.tele.2017.05.007_b0110 article-title: Cyc: a large-scale investment in knowledge infrastructure publication-title: Commun. ACM doi: 10.1145/219717.219745 – ident: 10.1016/j.tele.2017.05.007_b0010 – ident: 10.1016/j.tele.2017.05.007_b0060 – ident: 10.1016/j.tele.2017.05.007_b0125 – ident: 10.1016/j.tele.2017.05.007_b0100 – volume: 11 issue: 1 year: 2015 ident: 10.1016/j.tele.2017.05.007_b0150 article-title: Supporting learning object repository by automatic extraction of metadata publication-title: J. e-Learning Knowl. Soc. – ident: 10.1016/j.tele.2017.05.007_b0215 – volume: 38 start-page: 39 issue: 11 year: 1995 ident: 10.1016/j.tele.2017.05.007_b0145 article-title: Wordnet: a lexical database for english publication-title: Commun. ACM doi: 10.1145/219717.219748 – ident: 10.1016/j.tele.2017.05.007_b0050 – ident: 10.1016/j.tele.2017.05.007_b0195 doi: 10.1109/ICEELI.2012.6360568 – ident: 10.1016/j.tele.2017.05.007_b0075 doi: 10.1109/ITHET.2015.7218038 – ident: 10.1016/j.tele.2017.05.007_b0115 doi: 10.18653/v1/D15-1193 – year: 1997 ident: 10.1016/j.tele.2017.05.007_b0160 – ident: 10.1016/j.tele.2017.05.007_b0180 – volume: 9 start-page: 159 issue: 4 year: 2011 ident: 10.1016/j.tele.2017.05.007_b0190 article-title: A semantic annotation model for indexing and retrieving learning objects publication-title: J. Digital Inf. Manage. – volume: 41 start-page: 1955 issue: 12 year: 2008 ident: 10.1016/j.tele.2017.05.007_b0235 article-title: Comparison of decision tree methods for finding active objects publication-title: Adv. Space Res. doi: 10.1016/j.asr.2007.07.020 – year: 2008 ident: 10.1016/j.tele.2017.05.007_b0015 – volume: 51 start-page: 787 issue: 2 year: 2008 ident: 10.1016/j.tele.2017.05.007_b0035 article-title: Intelligent web-based learning system with personalized learning path guidance publication-title: Comput. Educ. doi: 10.1016/j.compedu.2007.08.004 – ident: 10.1016/j.tele.2017.05.007_b0220 – ident: 10.1016/j.tele.2017.05.007_b0140 doi: 10.4324/9780203416082 – volume: 29 start-page: 70 issue: 1 year: 2012 ident: 10.1016/j.tele.2017.05.007_b0065 article-title: Fast and accurate annotation of short texts with wikipedia pages publication-title: IEEE Softw. doi: 10.1109/MS.2011.122 – ident: 10.1016/j.tele.2017.05.007_b0020 doi: 10.1145/1298406.1298425 – start-page: 301 year: 2003 ident: 10.1016/j.tele.2017.05.007_b0130 article-title: Ontology learning part one — on discovering taxonomic relations from the web – ident: 10.1016/j.tele.2017.05.007_b0080 doi: 10.1109/ITHET.2015.7218038 – ident: 10.1016/j.tele.2017.05.007_b0155 doi: 10.1109/INCoS.2014.100 – year: 2000 ident: 10.1016/j.tele.2017.05.007_b0045 – volume: 13 start-page: 159 issue: 2–4 year: 2003 ident: 10.1016/j.tele.2017.05.007_b0030 article-title: Adaptive and intelligent web-based educational systems publication-title: Int. J. Artif. Intell. Ed. – volume: 45 start-page: 503 issue: 1 year: 1989 ident: 10.1016/j.tele.2017.05.007_b0120 article-title: On the limited memory bfgs method for large scale optimization publication-title: Math. Program. doi: 10.1007/BF01589116 – ident: 10.1016/j.tele.2017.05.007_b0210 – ident: 10.1016/j.tele.2017.05.007_b0230 doi: 10.1145/2684822.2685292 – volume: 27 start-page: 123 issue: 1 year: 2013 ident: 10.1016/j.tele.2017.05.007_b0055 article-title: Effective retrieval of text and media learning objects using automatic annotation publication-title: World Appl. Sci. J. – ident: 10.1016/j.tele.2017.05.007_b0205 doi: 10.3115/1073445.1073478 – start-page: 1440 year: 2007 ident: 10.1016/j.tele.2017.05.007_b0165 article-title: Deriving a large scale taxonomy from wikipedia |
SSID | ssj0017191 |
Score | 2.377696 |
Snippet | One standing problem in the area of web-based e-learning is how to support instructional designers to effectively and efficiently retrieve learning materials,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 595 |
SubjectTerms | Algorithms Artificial intelligence Automation CAI Computer assisted instruction Construction materials Curriculum sequencing Data analysis Distance learning E-learning Feature extraction Hypertext Machine learning Natural language processing Object recognition Online instruction Prerequisite Repositories Taxonomy Technological change |
Title | Prerequisites between learning objects: Automatic extraction based on a machine learning approach |
URI | https://dx.doi.org/10.1016/j.tele.2017.05.007 https://www.proquest.com/docview/2076201107 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-324X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017191 issn: 0736-5853 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-324X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017191 issn: 0736-5853 databaseCode: ACRLP dateStart: 19951201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-324X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017191 issn: 0736-5853 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1879-324X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017191 issn: 0736-5853 databaseCode: AIKHN dateStart: 19951201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-324X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017191 issn: 0736-5853 databaseCode: AKRWK dateStart: 19941201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4mOAAHBAPEWzlwQ2VJmqYttwmBBhMI8RDcoqR10RBssHVXfjtOm_IS4sCpr6SqHNef3dqfCdmTObCwKNIAIpYHkgME1mZJEOdpaiPIElbRLp5fqN6tPLuP7lvkqKmFcWmV3vbXNr2y1v5Mx0uz8zIYdK5RORE-UYcUhuRJ6uJ2x_6FOn3w9pHmwWNed83DwYEb7Qtn6hyvEk27S--q2TtdS9nfwemHma6w52SJLHqnkXbr51omLRi2yVxTUzxpk4UvtIIrxFyOYQyv04H7MzyhPhWL-gYRD3Rk3ceXySHtTstRRdlK0USP6xIH6nAtp7hj6HOVaQmfMxsG8lVye3J8c9QLfCuFIJOClUEojEoKUDLnaWGYQZwPc5BFrJQQXNkoN8AViIwVPAUbpxj1CWNCLiA0imfhGpkZjoawTii6BCAEs8wUIC2XNpUm4S5wwmVFxN0gvJGhzjzPuGt38aSbhLJH7eSundw1izTKfYPsf8x5qVk2_hwdNUujv-mKRhj4c952s47av6kTvI5w4JygePOft90i83iU1Plj22SmHE9hBz2V0u5WqrhLZrun_d6F2_av7vrv077qXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-h9gF4QIyB6AabH_aGotqO4yR7qypQGVAhARJvlp1cUNHWsjb9_zknDoNp4mFvUeyLorvL_e7i-wD4pkrkcVXlESa8jJRAjJwrsigt89wlWGS8abt4NdWTO_XjPrnfgHFXC-PTKoPtb216Y63DnWHg5vBpNhvekHISfJIOaQrJs5zi9r5KyCb3oD86v5hMXw4TUtEOzqP9kScItTNtmldN1t1neLUNPP1U2X_j01-WuoGfs13YCX4jG7Wv9gE2cL4Hm11Z8WoPtl91FvwI9nqJS_y9nvnD4RUL2VgszIh4YAvn_7-svrPRul40XVsZWellW-XAPLSVjC4s-9UkW-Ifyq4J-T7cnZ3ejidRmKYQFUryOoql1VmFWpUiryy3BPVxiapKtZZSaJeUFoVGWfBK5OjSnAI_aW0sJMZWiyI-gN58McdDYOQVoJTccVuhckK5XNlM-NiJJEugOwDR8dAUodW4n3jx03Q5ZY_G8914vhueGOL7AE5eaJ7aRhvv7k460Zg36mIICd6lO-rkaMLHuqJ1QgTvB6Wf_vOxX2Fzcnt1aS7PpxefYYtWsjad7Ah69XKNx-S41O5LUMxnd-3rZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prerequisites+between+learning+objects%3A+Automatic+extraction+based+on+a+machine+learning+approach&rft.jtitle=Telematics+and+informatics&rft.au=Gasparetti%2C+Fabio&rft.au=De+Medio%2C+Carlo&rft.au=Limongelli%2C+Carla&rft.au=Sciarrone%2C+Filippo&rft.date=2018-06-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5853&rft.eissn=1879-324X&rft.volume=35&rft.issue=3&rft.spage=595&rft.epage=610&rft_id=info:doi/10.1016%2Fj.tele.2017.05.007&rft.externalDocID=S0736585316304890 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5853&client=summon |