A Steepest Descent-Like Method for Variable Order Vector Optimization Problems
In some applications, the comparison between two elements may depend on the point leading to the so called variable order structure. Optimality concepts may be extended to this more general framework. In this paper, we extend the steepest descent-like method for smooth unconstrained vector optimizat...
Saved in:
| Published in | Journal of optimization theory and applications Vol. 162; no. 2; pp. 371 - 391 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Springer US
01.08.2014
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-3239 1573-2878 |
| DOI | 10.1007/s10957-013-0308-6 |
Cover
| Summary: | In some applications, the comparison between two elements may depend on the point leading to the so called variable order structure. Optimality concepts may be extended to this more general framework. In this paper, we extend the steepest descent-like method for smooth unconstrained vector optimization problems under a variable order structure. Roughly speaking, we see that every accumulation point of the generated sequence satisfies a necessary first order condition. We discuss the consequence of this fact in the convex case. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-013-0308-6 |