On Distributed Convex Optimization Under Inequality and Equality Constraints
We consider a general multi-agent convex optimization problem where the agents are to collectively minimize a global objective function subject to a global inequality constraint, a global equality constraint, and a global constraint set. The objective function is defined by a sum of local objective...
        Saved in:
      
    
          | Published in | IEEE transactions on automatic control Vol. 57; no. 1; pp. 151 - 164 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.01.2012
     Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9286 1558-2523  | 
| DOI | 10.1109/TAC.2011.2167817 | 
Cover
| Summary: | We consider a general multi-agent convex optimization problem where the agents are to collectively minimize a global objective function subject to a global inequality constraint, a global equality constraint, and a global constraint set. The objective function is defined by a sum of local objective functions, while the global constraint set is produced by the intersection of local constraint sets. In particular, we study two cases: one where the equality constraint is absent, and the other where the local constraint sets are identical. We devise two distributed primal-dual subgradient algorithms based on the characterization of the primal-dual optimal solutions as the saddle points of the Lagrangian and penalty functions. These algorithms can be implemented over networks with dynamically changing topologies but satisfying a standard connectivity property, and allow the agents to asymptotically agree on optimal solutions and optimal values of the optimization problem under the Slater's condition. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
| ISSN: | 0018-9286 1558-2523  | 
| DOI: | 10.1109/TAC.2011.2167817 |