Geometric Analysis of the Formation Problem for Autonomous Robots

In the formation control problem for autonomous robots, a distributed control law steers the robots to the desired target formation. A local stability result of the target formation can be derived by methods of linearization and center manifold theory or via a Lyapunov-based approach. Besides the ta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 55; no. 10; pp. 2379 - 2384
Main Authors Dörfler, Florian, Francis, Bruce
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2010.2053735

Cover

More Information
Summary:In the formation control problem for autonomous robots, a distributed control law steers the robots to the desired target formation. A local stability result of the target formation can be derived by methods of linearization and center manifold theory or via a Lyapunov-based approach. Besides the target formation, the closed-loop dynamics of the robots feature various other undesired invariant sets such as nonrigid formations. This note addresses a global stability analysis of the closed-loop formation control dynamics. We pursue a differential geometric approach and derive purely algebraic conditions for local stability of invariant embedded submanifolds. These theoretical results are then applied to the well-known example of a cyclic triangular formation and result in instability of all invariant sets other than the target formation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2053735