A POMDP Approach to Optimizing P300 Speller BCI Paradigm

To achieve high performance in brain-computer interfaces (BCIs) using P300, most of the work has been focused on feature extraction and classification algorithms. Although significant progress has been made in such signal processing methods in the lower layer, the issues in the higher layer, specifi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 20; no. 4; pp. 584 - 594
Main Authors Park, Jaeyoung, Kim, Kee-Eung
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2012.2191979

Cover

More Information
Summary:To achieve high performance in brain-computer interfaces (BCIs) using P300, most of the work has been focused on feature extraction and classification algorithms. Although significant progress has been made in such signal processing methods in the lower layer, the issues in the higher layer, specifically determining the stimulus schedule in order to identify the target reliably and efficiently, remain relatively unexplored. In this paper, we propose a systematic approach to compute an optimal stimulus schedule in P300 BCIs. Our approach adopts the partially observable Markov decision process, which is a model for planning in partially observable stochastic environments. We show that the thus obtained stimulus schedule achieves a significant performance improvement in terms of the success rate, bit rate, and practical bit rate through human subject experiments.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2012.2191979