Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide

In multilayer microwave integrated circuits such as low-temperature co-fired ceramics or multilayered printed circuit boards, waveguide-like structures can be fabricated by using periodic metallic via-holes referred to as substrate integrated waveguide (SIW). Such SIW structures can largely preserve...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 51; no. 11; pp. 2221 - 2227
Main Authors Feng Xu, Yulin Zhang, Hong, Wei, Wu, Ke, Tie Jun Cui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9480
1557-9670
DOI10.1109/TMTT.2003.818935

Cover

More Information
Summary:In multilayer microwave integrated circuits such as low-temperature co-fired ceramics or multilayered printed circuit boards, waveguide-like structures can be fabricated by using periodic metallic via-holes referred to as substrate integrated waveguide (SIW). Such SIW structures can largely preserve the advantages of conventional rectangular waveguides such as high-Q factor and high power capacity. However, they are subject to leakage due to periodic gaps, which potentially results in wave attenuation. Therefore, such a guided-wave modeling problem becomes a very complicated complex eigenvalue problem. Since the SIW are bilaterally unbounded, absorbing boundary conditions should be deployed in numerical algorithms. This often leads to a difficult complex root-extracting problem of a transcend equation. In this paper, we present a novel finite-difference frequency-domain algorithm with a perfectly matched layer and Floquet's theorem for the analysis of SIW guided-wave problems. In this scheme, the problem is converted into a generalized matrix eigenvalue problem and finally transformed to a standard matrix eigenvalue problem that can be solved with efficient subroutines available. This approach has been validated by experiment.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2003.818935