Application of machine learning in the preoperative radiomic diagnosis of ameloblastoma and odontogenic keratocyst based on cone-beam CT

Objectives Preoperative diagnosis of oral ameloblastoma (AME) and odontogenic keratocyst (OKC) has been a challenge in dentistry. This study uses radiomics approaches and machine learning (ML) algorithms to characterize cone-beam CT (CBCT) image features for the preoperative differential diagnosis o...

Full description

Saved in:
Bibliographic Details
Published inDento-maxillo-facial radiology Vol. 53; no. 5; pp. 316 - 324
Main Authors Song, Yang, Ma, Sirui, Mao, Bing, Xu, Kun, Liu, Yuan, Ma, Jingdong, Jia, Jun
Format Journal Article
LanguageEnglish
Published England Oxford University Press 28.06.2024
Subjects
Online AccessGet full text
ISSN0250-832X
1476-542X
1476-542X
DOI10.1093/dmfr/twae016

Cover

More Information
Summary:Objectives Preoperative diagnosis of oral ameloblastoma (AME) and odontogenic keratocyst (OKC) has been a challenge in dentistry. This study uses radiomics approaches and machine learning (ML) algorithms to characterize cone-beam CT (CBCT) image features for the preoperative differential diagnosis of AME and OKC and compares ML algorithms to expert radiologists to validate performance. Methods We retrospectively collected the data of 326 patients with AME and OKC, where all diagnoses were confirmed by histopathologic tests. A total of 348 features were selected to train six ML models for differential diagnosis by a 5-fold cross-validation. We then compared the performance of ML-based diagnoses to those of radiologists. Results Among the six ML models, XGBoost was effective in distinguishing AME and OKC in CBCT images, with its classification performance outperforming the other models. The mean precision, recall, accuracy, F1-score, and area under the curve (AUC) were 0.900, 0.807, 0.843, 0.841, and 0.872, respectively. Compared to the diagnostics by radiologists, ML-based radiomic diagnostics performed better. Conclusions Radiomic-based ML algorithms allow CBCT images of AME and OKC to be distinguished accurately, facilitating the preoperative differential diagnosis of AME and OKC. Advances in knowledge ML and radiomic approaches with high-resolution CBCT images provide new insights into the differential diagnosis of AME and OKC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0250-832X
1476-542X
1476-542X
DOI:10.1093/dmfr/twae016