Optimal Transport in Reproducing Kernel Hilbert Spaces: Theory and Applications
In this paper, we present a mathematical and computational framework for comparing and matching distributions in reproducing kernel Hilbert spaces (RKHS). This framework, called optimal transport in RKHS, is a generalization of the optimal transport problem in input spaces to (potentially) infinite-...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 7; pp. 1741 - 1754 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0162-8828 1939-3539 2160-9292 1939-3539 |
DOI | 10.1109/TPAMI.2019.2903050 |
Cover
Summary: | In this paper, we present a mathematical and computational framework for comparing and matching distributions in reproducing kernel Hilbert spaces (RKHS). This framework, called optimal transport in RKHS, is a generalization of the optimal transport problem in input spaces to (potentially) infinite-dimensional feature spaces. We provide a computable formulation of Kantorovich's optimal transport in RKHS. In particular, we explore the case in which data distributions in RKHS are Gaussian, obtaining closed-form expressions of both the estimated Wasserstein distance and optimal transport map via kernel matrices. Based on these expressions, we generalize the Bures metric on covariance matrices to infinite-dimensional settings, providing a new metric between covariance operators. Moreover, we extend the correlation alignment problem to Hilbert spaces, giving a new strategy for matching distributions in RKHS. Empirically, we apply the derived formulas under the Gaussianity assumption to image classification and domain adaptation. In both tasks, our algorithms yield state-of-the-art performances, demonstrating the effectiveness and potential of our framework. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0162-8828 1939-3539 2160-9292 1939-3539 |
DOI: | 10.1109/TPAMI.2019.2903050 |