Software Fault Prediction Using Quad Tree-Based K-Means Clustering Algorithm

Unsupervised techniques like clustering may be used for fault prediction in software modules, more so in those cases where fault labels are not available. In this paper a Quad Tree-based K-Means algorithm has been applied for predicting faults in program modules. The aims of this paper are twofold....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 24; no. 6; pp. 1146 - 1150
Main Authors Bishnu, P. S., Bhattacherjee, V.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2011.163

Cover

More Information
Summary:Unsupervised techniques like clustering may be used for fault prediction in software modules, more so in those cases where fault labels are not available. In this paper a Quad Tree-based K-Means algorithm has been applied for predicting faults in program modules. The aims of this paper are twofold. First, Quad Trees are applied for finding the initial cluster centers to be input to the A'-Means Algorithm. An input threshold parameter δ governs the number of initial cluster centers and by varying δ the user can generate desired initial cluster centers. The concept of clustering gain has been used to determine the quality of clusters for evaluation of the Quad Tree-based initialization algorithm as compared to other initialization techniques. The clusters obtained by Quad Tree-based algorithm were found to have maximum gain values. Second, the Quad Tree- based algorithm is applied for predicting faults in program modules. The overall error rates of this prediction approach are compared to other existing algorithms and are found to be better in most of the cases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2011.163