Coded modulation using superimposed binary codes

In this correspondence, we investigate in a comprehensive fashion a one-layer coding/shaping scheme resembling a perfectly cooperated multiple-access system. At the transmitter, binary data are encoded by either single-level or multilevel codes. The coded bits are first randomly interleaved and then...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 50; no. 12; pp. 3331 - 3343
Main Authors Ma, X., Ping, L.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2004.838104

Cover

More Information
Summary:In this correspondence, we investigate in a comprehensive fashion a one-layer coding/shaping scheme resembling a perfectly cooperated multiple-access system. At the transmitter, binary data are encoded by either single-level or multilevel codes. The coded bits are first randomly interleaved and then entered into a signal mapper. At each time, the signal mapper accepts as input multiple binary digits and delivers as output an amplitude signal, where the input are first independently mapped into 2-PAM signals (possibly having different amplitudes) and then superimposed to form the output. The receiver consists of an iterative decoding/demapping algorithm with an entropy-based stopping criterion. In the special cases when all the 2-PAM signals have equal amplitudes, based on an irregular trellis, we propose an optimal soft-input-soft-output (SISO) demapping algorithm with quadratic rather than exponential complexity. In the general cases, when multilevel codes are employed, we propose power-allocation strategies to facilitate the iterative decoding/dempaping algorithm. Using the unequal power-allocations and the Gaussian-approximation-based suboptimal demapping algorithm (with linear complexity), coded modulation with high bandwidth efficiency can be implemented.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2004.838104