Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO

In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 17; p. 6702
Main Authors Zhang, Bin, Sun, Chuan-Feng, Fang, Shu-Qi, Zhao, Ye-Hai, Su, Song
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 05.09.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22176702

Cover

More Information
Summary:In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22176702