Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO
In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 22; no. 17; p. 6702 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
05.09.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s22176702 |
Cover
| Summary: | In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s22176702 |