An Improved ASIFT Image Feature Matching Algorithm Based on POS Information

The affine scale-invariant feature transform (ASIFT) algorithm is a feature extraction algorithm with affinity and scale invariance, which is suitable for image feature matching using unmanned aerial vehicles (UAVs). However, there are many problems in the matching process, such as the low efficienc...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 20; p. 7749
Main Authors Gao, Junchai, Sun, Zhen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 12.10.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22207749

Cover

More Information
Summary:The affine scale-invariant feature transform (ASIFT) algorithm is a feature extraction algorithm with affinity and scale invariance, which is suitable for image feature matching using unmanned aerial vehicles (UAVs). However, there are many problems in the matching process, such as the low efficiency and mismatching. In order to improve the matching efficiency, this algorithm firstly simulates image distortion based on the position and orientation system (POS) information from real-time UAV measurements to reduce the number of simulated images. Then, the scale-invariant feature transform (SIFT) algorithm is used for feature point detection, and the extracted feature points are combined with the binary robust invariant scalable keypoints (BRISK) descriptor to generate the binary feature descriptor, which is matched using the Hamming distance. Finally, in order to improve the matching accuracy of the UAV images, based on the random sample consensus (RANSAC) a false matching eliminated algorithm is proposed. Through four groups of experiments, the proposed algorithm is compared with the SIFT and ASIFT. The results show that the algorithm can optimize the matching effect and improve the matching speed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22207749