A Spiking Neural Network Methodology and System for Learning and Comparative Analysis of EEG Data From Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects
This paper introduces a method utilizing spiking neural networks (SNN) for learning, classification, and comparative analysis of brain data. As a case study, the method was applied to electroencephalography (EEG) data collected during a GO/NOGO cognitive task performed by untreated opiate addicts, t...
        Saved in:
      
    
          | Published in | IEEE transactions on biomedical engineering Vol. 63; no. 9; pp. 1830 - 1841 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.09.2016
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9294 1558-2531 1558-2531  | 
| DOI | 10.1109/TBME.2015.2503400 | 
Cover
| Summary: | This paper introduces a method utilizing spiking neural networks (SNN) for learning, classification, and comparative analysis of brain data. As a case study, the method was applied to electroencephalography (EEG) data collected during a GO/NOGO cognitive task performed by untreated opiate addicts, those undergoing methadone maintenance treatment (MMT) for opiate dependence and a healthy control group. Methods: the method is based on an SNN architecture called NeuCube, trained on spatiotemporal EEG data. Objective: NeuCube was used to classify EEG data across subject groups and across GO versus NOGO trials, but also facilitated a deeper comparative analysis of the dynamic brain processes. Results: This analysis results in a better understanding of human brain functioning across subject groups when performing a cognitive task. In terms of the EEG data classification, a NeuCube model obtained better results (the maximum obtained accuracy: 90.91%) when compared with traditional statistical and artificial intelligence methods (the maximum obtained accuracy: 50.55%). Significance: more importantly, new information about the effects of MMT on cognitive brain functions is revealed through the analysis of the SNN model connectivity and its dynamics. Conclusion: this paper presented a new method for EEG data modeling and revealed new knowledge on brain functions associated with mental activity which is different from the brain activity observed in a resting state of the same subjects. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Undefined-3  | 
| ISSN: | 0018-9294 1558-2531 1558-2531  | 
| DOI: | 10.1109/TBME.2015.2503400 |