Techniques to Improve the Accuracy of Presampling MTF Measurement in Digital X-ray Imaging Based on Constrained Spline Regression

To develop an effective curve-fitting algorithm with a regularization term for measuring the modulation transfer function (MTF) of digital radiographic imaging systems, in comparison with representative prior methods, a C-spline regression technique based upon the monotonicity and convex/concave sha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 61; no. 4; pp. 1339 - 1349
Main Authors Zhou, Zhongxing, Zhu, Qingzhen, Zhao, Huijuan, Zhang, Lixin, Ma, Wenjuan, Gao, Feng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2014.2304955

Cover

More Information
Summary:To develop an effective curve-fitting algorithm with a regularization term for measuring the modulation transfer function (MTF) of digital radiographic imaging systems, in comparison with representative prior methods, a C-spline regression technique based upon the monotonicity and convex/concave shape restrictions of the edge spread function (ESF) was proposed for ESF estimation in this study. Two types of oversampling techniques and following four curve-fitting algorithms including the C-spline regression technique were considered for ESF estimation. A simulated edge image with a known MTF was used for accuracy determination of algorithms. Experimental edge images from two digital radiography systems were used for statistical evaluation of each curve-fitting algorithm on MTF measurements uncertainties. The simulation results show that the C-spline regression algorithm obtained a minimum MTF measurement error (an average error of 0.12% ± 0.11% and 0.18% ± 0.17% corresponding to two types of oversampling techniques, respectively, up to the cutoff frequency) among all curve-fitting algorithms. In the case of experimental edge images, the C-spline regression algorithm obtained the best uncertainty performance of MTF measurement among four curve-fitting algorithms for both the Pixarray-100 digital specimen radiography system and Hologic full-field digital mammography system. Comparisons among MTF estimates using four curve-fitting algorithms revealed that the proposed C-spline regression technique outperformed other algorithms on MTF measurements accuracy and uncertainty performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2014.2304955