Compensation of Multimode Fiber Dispersion Using Adaptive Optics via Convex Optimization

In this paper, we propose a provably optimal technique for minimizing intersymbol interference (ISI) in multimode fiber (MMF) systems using adaptive optics via convex optimization. We use a spatial light modulator (SLM) to shape the spatial profile of light launched into an MMF. We derive an express...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 26; no. 10; pp. 1295 - 1303
Main Authors Panicker, R.A., Kahn, J.M., Boyd, S.P.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 15.05.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2008.917324

Cover

More Information
Summary:In this paper, we propose a provably optimal technique for minimizing intersymbol interference (ISI) in multimode fiber (MMF) systems using adaptive optics via convex optimization. We use a spatial light modulator (SLM) to shape the spatial profile of light launched into an MMF. We derive an expression for the system impulse response in terms of the SLM reflectance and the field patterns of the MMF principal modes (PMs). Finding optimal SLM settings to minimize ISI, subject to physical constraints, is posed as an optimization problem. We observe that our problem can be cast as a second-order cone program, which is a convex optimization problem. Its global solution can, therefore, be found with minimal computational complexity, and can be implemented using fast, low-complexity adaptive algorithms. We include simulation results, which show that this technique opens up an eye pattern originally closed due to ISI. We also see that, contrary to what one might expect, the optimal SLM settings do not completely suppress higher order PMs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2008.917324