Detection and Prediction of Ovulation From Body Temperature Measured by an In-Ear Wearable Thermometer

Objective: We present a non-invasive wearable device for fertility monitoring and propose an effective and flexible statistical learning algorithm to detect and predict ovulation using data captured by this device. Methods: The system consists of an earpiece, which measures the ear canal temperature...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 67; no. 2; pp. 512 - 522
Main Authors Luo, Lan, She, Xichen, Cao, Jiexuan, Zhang, Yunlong, Li, Yijiang, Song, Peter X. K.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2019.2916823

Cover

More Information
Summary:Objective: We present a non-invasive wearable device for fertility monitoring and propose an effective and flexible statistical learning algorithm to detect and predict ovulation using data captured by this device. Methods: The system consists of an earpiece, which measures the ear canal temperature every 5 min during night sleep hours, and a base station that transmits data to a smartphone application for analysis. We establish a data-cleaning protocol for data preprocessing and then fit a Hidden Markov Model (HMM) with two hidden states of high and low temperature to identify the more probable state of each time point via the predicted probabilities. Finally, a post-processing procedure is developed to incorporate biorhythm information to form a time-course biphasic profile for each subject. Results: The performance of the proposed algorithms applied to data collected by the device are compared with traditional methods in terms of match rate with self-reported ovulation days confirmed with an ovulation test kit. Empirical study results from a group of 34 users yielded significant improvements over the traditional methods in terms of detection accuracy (with sensitivity 92.31%) and prediction power (23.07-31.55% higher). Conclusion: We demonstrated the feasibility for reliable ovulation detection and prediction with high-frequency temperature data collected by a non-invasive wearable device. Significance: Traditional fertility monitoring methods are often either inaccurate or inconvenient. The wearable device and learning algorithm presented in this paper provide a user friendly and reliable platform for tracking ovulation, which may have a broad impact on both fertility research and real-world family planning.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2019.2916823