Accurate Heart Rate Monitoring During Physical Exercises Using PPG

Objective: The challenging task of heart rate (HR) estimation from the photoplethysmographic (PPG) signal, during intensive physical exercises, is tackled in this paper. Methods: The study presents a detailed analysis of a novel algorithm (WFPV) that exploits a Wiener filter to attenuate the motion...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 64; no. 9; pp. 2016 - 2024
Main Author Temko, Andriy
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2017.2676243

Cover

More Information
Summary:Objective: The challenging task of heart rate (HR) estimation from the photoplethysmographic (PPG) signal, during intensive physical exercises, is tackled in this paper. Methods: The study presents a detailed analysis of a novel algorithm (WFPV) that exploits a Wiener filter to attenuate the motion artifacts, a phase vocoder to refine the HR estimate and user-adaptive post-processing to track the subject physiology. Additionally, an offline version of the HR estimation algorithm that uses Viterbi decoding is designed for scenarios that do not require online HR monitoring (WFPV+VD). The performance of the HR estimation systems is rigorously compared with existing algorithms on the publically available database of 23 PPG recordings. Results: On the whole dataset of 23 PPG recordings, the algorithms result in average absolute errors of 1.97 and 1.37 BPM in the online and offline modes, respectively. On the test dataset of 10 PPG recordings which were most corrupted with motion artifacts, WFPV has an error of 2.95 BPM on its own and 2.32 BPM in an ensemble with two existing algorithms. Conclusion: The error rate is significantly reduced when compared with the state-of-the art PPG-based HR estimation methods. Significance: The proposed system is shown to be accurate in the presence of strong motion artifacts and in contrast to existing alternatives has very few free parameters to tune. The algorithm has a low computational cost and can be used for fitness tracking and health monitoring in wearable devices. The MATLAB implementation of the algorithm is provided online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2017.2676243