On Optimization Over the Efficient Set of a Multiple Objective Linear Programming Problem
In this paper, we provide a mixed-integer programming approach for solving the problem of minimizing a real-valued function over the efficient set of a multiple objective linear program problem. Instead of solving the problem directly, we introduce a new problem of minimizing the objective function...
Saved in:
Published in | Journal of optimization theory and applications Vol. 172; no. 1; pp. 236 - 246 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3239 1573-2878 |
DOI | 10.1007/s10957-016-1030-y |
Cover
Summary: | In this paper, we provide a mixed-integer programming approach for solving the problem of minimizing a real-valued function over the efficient set of a multiple objective linear program problem. Instead of solving the problem directly, we introduce a new problem of minimizing the objective function subject to some linear constraints with additional binary variables. We show under certain conditions that the two problems are equivalent. When the objective function of the original problem is a linear or convex function, the new problem is a linear or convex programming problem, respectively, with some binary variables. These problems can be solved as mixed-integer programs with current state-of-art mixed-integer programming solvers. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-016-1030-y |