Cardiorespiratory Model-Based Data-Driven Approach for Sleep Apnea Detection
Obstructive sleep apnea (OSA) is a chronic sleep disorder affecting millions of people worldwide. Individuals with OSA are rarely aware of the condition and are often left untreated, which can lead to some serious health problems. Nowadays, several low-cost wearable health sensors are available that...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 22; no. 4; pp. 1036 - 1045 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2017.2740120 |
Cover
| Summary: | Obstructive sleep apnea (OSA) is a chronic sleep disorder affecting millions of people worldwide. Individuals with OSA are rarely aware of the condition and are often left untreated, which can lead to some serious health problems. Nowadays, several low-cost wearable health sensors are available that can be used to conveniently and noninvasively collect a wide range of physiological signals. In this paper, we propose a new framework for OSA detection in which we combine the wearable sensor measurement signals with the mathematical models of the cardiorespiratory system. Vector-valued Gaussian processes (GPs) are adopted to model the physiological variations among different individuals. The GP covariance is constructed using the sum of separable kernel functions, and the GP hyperparameters are estimated by maximizing the marginal likelihood function. A likelihood ratio test is proposed to detect OSA using the widely available heart rate and peripheral oxygen saturation (SpO<inline-formula><tex-math notation="LaTeX">_2</tex-math> </inline-formula>) measurement signals. We conduct experiments on both synthetic and real data to show the effectiveness of the proposed OSA detection framework compared to purely data-driven approaches. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2194 2168-2208 2168-2208 |
| DOI: | 10.1109/JBHI.2017.2740120 |