Regular and irregular progressive edge-growth tanner graphs

We propose a general method for constructing Tanner graphs having a large girth by establishing edges or connections between symbol and check nodes in an edge-by-edge manner, called progressive edge-growth (PEG) algorithm. Lower bounds on the girth of PEG Tanner graphs and on the minimum distance of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 51; no. 1; pp. 386 - 398
Main Authors Xiao-Yu Hu, Eleftheriou, E., Arnold, D.M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2004.839541

Cover

More Information
Summary:We propose a general method for constructing Tanner graphs having a large girth by establishing edges or connections between symbol and check nodes in an edge-by-edge manner, called progressive edge-growth (PEG) algorithm. Lower bounds on the girth of PEG Tanner graphs and on the minimum distance of the resulting low-density parity-check (LDPC) codes are derived in terms of parameters of the graphs. Simple variations of the PEG algorithm can also be applied to generate linear-time encodeable LDPC codes. Regular and irregular LDPC codes using PEG Tanner graphs and allowing symbol nodes to take values over GF(q) (q>2) are investigated. Simulation results show that the PEG algorithm is a powerful algorithm to generate good short-block-length LDPC codes.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2004.839541