Optimum Design and Global Analysis of Flexible Jumper for An Innovative Subsurface Production System in Ultra-Deep Water
The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical an...
Saved in:
Published in | China ocean engineering Vol. 28; no. 2; pp. 239 - 247 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Chinese Ocean Engineering Society
01.04.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0890-5487 2191-8945 |
DOI | 10.1007/s13344-014-0019-2 |
Cover
Summary: | The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept. |
---|---|
Bibliography: | 32-1441/P The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept. HUANG Yi,ZHEN Xing-wei,ZHANG Qi,WANG Wen-hua subsurface production system;flexible jumper;dynamic analysis;ultra-deep water ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0890-5487 2191-8945 |
DOI: | 10.1007/s13344-014-0019-2 |