Robust Control of Nonlinear Jump Parameter Systems Governed by Uncertain Chains

We consider an infinite-horizon minimax optimal control problem for stochastic uncertain systems governed by a discrete-state uncertain continuous-time chain. Using existing risk-sensitive control results, a robust suboptimal absolutely stabilizing guaranteed cost controller is constructed. Conditio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 53; no. 6; pp. 1520 - 1526
Main Authors Ford, J.J., Ugrinovskii, V.A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2008.928911

Cover

More Information
Summary:We consider an infinite-horizon minimax optimal control problem for stochastic uncertain systems governed by a discrete-state uncertain continuous-time chain. Using existing risk-sensitive control results, a robust suboptimal absolutely stabilizing guaranteed cost controller is constructed. Conditions are presented under which this suboptimal controller is minimax optimal. We then present a numeric algorithm for calculating a robust (sub)optimal controller using a Markov chain approximation technique.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2008.928911