Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm

•Propose a hybrid architecture based on a modified bat algorithm for multi-step wind speed forecasting.•Improve the accuracy of multi-step wind speed forecasting.•Modify bat algorithm with CG to improve optimized performance. As one of the most promising sustainable energy sources, wind energy plays...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 143; pp. 410 - 430
Main Authors Xiao, Liye, Qian, Feng, Shao, Wei
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
DOI10.1016/j.enconman.2017.04.012

Cover

Abstract •Propose a hybrid architecture based on a modified bat algorithm for multi-step wind speed forecasting.•Improve the accuracy of multi-step wind speed forecasting.•Modify bat algorithm with CG to improve optimized performance. As one of the most promising sustainable energy sources, wind energy plays an important role in energy development because of its cleanliness without causing pollution. Generally, wind speed forecasting, which has an essential influence on wind power systems, is regarded as a challenging task. Analyses based on single-step wind speed forecasting have been widely used, but their results are insufficient in ensuring the reliability and controllability of wind power systems. In this paper, a new forecasting architecture based on decomposing algorithms and modified neural networks is successfully developed for multi-step wind speed forecasting. Four different hybrid models are contained in this architecture, and to further improve the forecasting performance, a modified bat algorithm (BA) with the conjugate gradient (CG) method is developed to optimize the initial weights between layers and thresholds of the hidden layer of neural networks. To investigate the forecasting abilities of the four models, the wind speed data collected from four different wind power stations in Penglai, China, were used as a case study. The numerical experiments showed that the hybrid model including the singular spectrum analysis and general regression neural network with CG-BA (SSA-CG-BA-GRNN) achieved the most accurate forecasting results in one-step to three-step wind speed forecasting.
AbstractList As one of the most promising sustainable energy sources, wind energy plays an important role in energy development because of its cleanliness without causing pollution. Generally, wind speed forecasting, which has an essential influence on wind power systems, is regarded as a challenging task. Analyses based on single-step wind speed forecasting have been widely used, but their results are insufficient in ensuring the reliability and controllability of wind power systems. In this paper, a new forecasting architecture based on decomposing algorithms and modified neural networks is successfully developed for multi-step wind speed forecasting. Four different hybrid models are contained in this architecture, and to further improve the forecasting performance, a modified bat algorithm (BA) with the conjugate gradient (CG) method is developed to optimize the initial weights between layers and thresholds of the hidden layer of neural networks. To investigate the forecasting abilities of the four models, the wind speed data collected from four different wind power stations in Penglai, China, were used as a case study. The numerical experiments showed that the hybrid model including the singular spectrum analysis and general regression neural network with CG-BA (SSA-CG-BA-GRNN) achieved the most accurate forecasting results in one-step to three-step wind speed forecasting.
•Propose a hybrid architecture based on a modified bat algorithm for multi-step wind speed forecasting.•Improve the accuracy of multi-step wind speed forecasting.•Modify bat algorithm with CG to improve optimized performance. As one of the most promising sustainable energy sources, wind energy plays an important role in energy development because of its cleanliness without causing pollution. Generally, wind speed forecasting, which has an essential influence on wind power systems, is regarded as a challenging task. Analyses based on single-step wind speed forecasting have been widely used, but their results are insufficient in ensuring the reliability and controllability of wind power systems. In this paper, a new forecasting architecture based on decomposing algorithms and modified neural networks is successfully developed for multi-step wind speed forecasting. Four different hybrid models are contained in this architecture, and to further improve the forecasting performance, a modified bat algorithm (BA) with the conjugate gradient (CG) method is developed to optimize the initial weights between layers and thresholds of the hidden layer of neural networks. To investigate the forecasting abilities of the four models, the wind speed data collected from four different wind power stations in Penglai, China, were used as a case study. The numerical experiments showed that the hybrid model including the singular spectrum analysis and general regression neural network with CG-BA (SSA-CG-BA-GRNN) achieved the most accurate forecasting results in one-step to three-step wind speed forecasting.
Author Shao, Wei
Qian, Feng
Xiao, Liye
Author_xml – sequence: 1
  givenname: Liye
  surname: Xiao
  fullname: Xiao, Liye
  organization: School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Feng
  surname: Qian
  fullname: Qian, Feng
  organization: Department of Electronics Engineering and Computer Science, Peking University, Beijing, China
– sequence: 3
  givenname: Wei
  surname: Shao
  fullname: Shao, Wei
  email: weishao@uestc.edu.cn
  organization: School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNqFkUFr3DAQhUVJoJtN_0IR9NKLHcnWyjb00BLSJpCQS3oWI3m8K2NLW0lOyL-vlm0PyWXRYUDzvsfMvAty5rxDQj5zVnLG5dVYojPezeDKivGmZKJkvPpAVrxtuqKqquaMrBjvZNF2THwkFzGOjLF6w-SKjA_LlGwRE-7pi3U9jXvEng4-oIGYrNtSDTH_eEeB7l51sG-7EMzOJjRpCUghG4Cjdt4H_5whDYnCtPXBpt18Sc4HmCJ--lfX5PfPm6fr2-L-8dfd9Y_7wgguUsGF2bAWeGsaoTW2veESYMNxkFryvpEauazrnoHUUNWd5sxsgIMZgGHu12vy9eibh_izYExqttHgNIFDv0RV5eVFU3f5rcmXd9LRL8Hl6bKqEqKt2-5gKI8qE3yMAQe1D3aG8Ko4U4cI1Kj-R6AOESgmVI4gg9_egcYmSNa7FMBOp_HvRxzztZ4tBhWNzUrsbb5_Ur23pyz-AhEbqsU
CitedBy_id crossref_primary_10_1007_s00366_020_00979_z
crossref_primary_10_1002_cpe_6772
crossref_primary_10_1016_j_apenergy_2018_09_012
crossref_primary_10_1016_j_renene_2018_12_035
crossref_primary_10_1007_s11356_020_10957_z
crossref_primary_10_1007_s40313_021_00862_2
crossref_primary_10_1016_j_apenergy_2019_01_063
crossref_primary_10_1016_j_enconman_2017_07_065
crossref_primary_10_1108_IJESM_04_2020_0008
crossref_primary_10_1016_j_energy_2020_117081
crossref_primary_10_3390_en11040697
crossref_primary_10_1016_j_renene_2019_04_154
crossref_primary_10_1007_s10586_020_03099_x
crossref_primary_10_1016_j_asoc_2020_106463
crossref_primary_10_1016_j_enconman_2018_01_038
crossref_primary_10_1016_j_energy_2022_124569
crossref_primary_10_1016_j_enconman_2018_04_082
crossref_primary_10_1016_j_renene_2019_04_157
crossref_primary_10_1016_j_rineng_2022_100399
crossref_primary_10_1016_j_enconman_2017_11_053
crossref_primary_10_1007_s10614_023_10357_8
crossref_primary_10_1016_j_enconman_2018_07_070
crossref_primary_10_1016_j_energy_2019_07_025
crossref_primary_10_1016_j_enconman_2018_04_099
crossref_primary_10_1016_j_enconman_2020_113098
crossref_primary_10_1371_journal_pone_0225362
crossref_primary_10_1007_s13369_023_07610_5
crossref_primary_10_1016_j_enconman_2019_02_086
crossref_primary_10_1016_j_rineng_2023_101274
crossref_primary_10_1016_j_energy_2023_130078
crossref_primary_10_1155_2022_6837395
crossref_primary_10_1016_j_apenergy_2019_01_046
crossref_primary_10_1016_j_enconman_2018_02_012
crossref_primary_10_1016_j_apenergy_2018_06_053
crossref_primary_10_1007_s00500_021_05608_5
crossref_primary_10_1016_j_energy_2019_06_075
crossref_primary_10_1016_j_apenergy_2017_10_031
crossref_primary_10_1016_j_jclepro_2020_124628
crossref_primary_10_3390_wind2020013
crossref_primary_10_1016_j_seta_2020_100745
crossref_primary_10_1007_s11356_019_07402_1
crossref_primary_10_1016_j_egyr_2022_07_164
crossref_primary_10_1016_j_egyr_2022_09_030
crossref_primary_10_1016_j_asoc_2018_08_012
crossref_primary_10_1038_s41598_024_83836_z
crossref_primary_10_1016_j_enconman_2018_11_006
crossref_primary_10_1155_2018_3469465
crossref_primary_10_1177_0142331218771141
crossref_primary_10_1016_j_renene_2020_09_108
crossref_primary_10_1016_j_apenergy_2018_07_050
crossref_primary_10_1016_j_enconman_2018_02_034
crossref_primary_10_1016_j_apenergy_2019_04_188
crossref_primary_10_1016_j_ijhydene_2020_08_052
crossref_primary_10_1016_j_enconman_2019_05_020
crossref_primary_10_1016_j_knosys_2019_01_015
crossref_primary_10_1016_j_matpr_2021_07_336
crossref_primary_10_1016_j_renene_2017_06_095
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_12677_aam_2024_1310429
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_1016_j_energy_2024_133514
crossref_primary_10_1088_1755_1315_153_2_022001
crossref_primary_10_1109_ACCESS_2020_3001437
crossref_primary_10_3389_fenvs_2021_740093
crossref_primary_10_1016_j_renene_2021_05_160
crossref_primary_10_1007_s00521_022_07662_y
crossref_primary_10_1002_eng2_12178
crossref_primary_10_1016_j_ijhydene_2022_12_260
crossref_primary_10_1016_j_eswa_2018_03_015
crossref_primary_10_1016_j_energy_2021_121764
crossref_primary_10_1016_j_fuel_2024_133393
crossref_primary_10_3390_en11112976
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_3390_en12183588
crossref_primary_10_1016_j_jclepro_2020_121027
crossref_primary_10_1016_j_renene_2021_07_126
crossref_primary_10_1016_j_asoc_2020_106116
crossref_primary_10_1016_j_aei_2022_101806
crossref_primary_10_1016_j_apenergy_2018_10_080
crossref_primary_10_3233_JIFS_189709
crossref_primary_10_1016_j_asoc_2020_106917
crossref_primary_10_3390_electronics10030261
crossref_primary_10_1016_j_enconman_2018_04_021
crossref_primary_10_1016_j_fuel_2022_126435
crossref_primary_10_1002_cem_3377
crossref_primary_10_1016_j_asoc_2018_09_005
crossref_primary_10_3390_en16031530
crossref_primary_10_1155_2018_9287097
crossref_primary_10_1007_s13198_023_01857_9
crossref_primary_10_1016_j_enconman_2020_113346
crossref_primary_10_1155_2020_2609674
crossref_primary_10_1016_j_eswa_2018_04_024
crossref_primary_10_1016_j_isci_2022_105804
crossref_primary_10_1016_j_renene_2019_05_039
crossref_primary_10_1016_j_energy_2022_126179
crossref_primary_10_1016_j_enconman_2017_10_085
crossref_primary_10_1016_j_enconman_2017_09_029
crossref_primary_10_1016_j_apenergy_2019_114345
crossref_primary_10_1155_2019_9575782
Cites_doi 10.1016/j.ijepes.2014.03.050
10.1080/07350015.1995.10524599
10.1016/j.enconman.2013.01.033
10.1016/j.enconman.2013.08.012
10.1016/j.apenergy.2016.01.050
10.1016/S0167-6105(98)00192-5
10.1098/rspa.1998.0193
10.1016/j.enconman.2016.02.041
10.1016/j.enconman.2014.05.058
10.1016/j.renene.2007.01.014
10.1016/j.ijepes.2014.07.029
10.1016/j.renene.2012.06.012
10.1016/j.enconman.2014.12.053
10.1016/j.enconman.2016.02.013
10.1016/j.apm.2015.11.030
10.1016/j.rser.2008.02.002
10.1016/j.enconman.2015.04.057
10.1016/j.renene.2014.03.068
10.1016/S0960-1481(99)00125-1
10.1016/j.neucom.2015.04.071
10.1109/72.97934
10.1504/IJBIC.2013.055093
10.1016/j.physa.2014.01.020
10.1016/j.eswa.2006.10.032
10.1016/S0038-092X(98)00032-2
10.1016/j.enconman.2010.11.007
10.1016/j.energy.2015.01.063
10.1016/j.protcy.2012.05.131
10.1016/j.renene.2009.06.008
10.1016/j.apenergy.2013.02.002
10.1016/j.enconman.2016.05.026
10.1016/j.neucom.2006.01.032
10.1504/IJBIC.2011.042259
10.1016/j.enconman.2016.08.086
10.1260/0309-524X.35.3.369
10.1016/j.ijepes.2013.03.034
10.4028/www.scientific.net/AMM.203.88
10.1016/j.enconman.2016.01.007
10.1016/S0167-6105(01)00222-7
10.1016/j.apenergy.2011.07.044
10.1016/j.enconman.2014.09.060
10.1016/j.renene.2008.04.017
10.1016/j.renene.2003.11.009
10.1142/S1793536909000047
10.1016/j.renene.2008.03.014
10.1016/j.apenergy.2016.07.113
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. Jul 1, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jul 1, 2017
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2017.04.012
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1879-2227
EndPage 430
ExternalDocumentID 10_1016_j_enconman_2017_04_012
S0196890417303187
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c414t-14c508a18c74bbe8dc16aa51ef6b61d76be1633d0a6ba239b10c5a1acfa0e1d73
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Sun Sep 28 00:22:10 EDT 2025
Wed Aug 13 02:57:02 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Wed Oct 01 01:59:51 EDT 2025
Fri Feb 23 02:33:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
FEEMD
GRNN
WPD
SVM
WD
Hybrid forecasting architecture
CSA
SDA
EEMD
GA
EA
EMD
MSE
Improved bat algorithm
SSA
CG
MAPE
Singular spectrum analysis, wind speed forecasting
PSO
MAE
RBFNN
FVD
ARIMA
BA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-14c508a18c74bbe8dc16aa51ef6b61d76be1633d0a6ba239b10c5a1acfa0e1d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2024483897
PQPubID 2047472
PageCount 21
ParticipantIDs proquest_miscellaneous_2000473939
proquest_journals_2024483897
crossref_primary_10_1016_j_enconman_2017_04_012
crossref_citationtrail_10_1016_j_enconman_2017_04_012
elsevier_sciencedirect_doi_10_1016_j_enconman_2017_04_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Zhou, Jing, Gong (b0040) 2011; 52
Du, Liu (b0195) 2012; 203
Zhao, Hu, Zuo (b0025) 2009; 34
Ozay, Celiktas (b0015) 2016; 121
Riahy, Abedi (b0065) 2008; 33
Wang, Yeh, Young, Hu, Lo (b0235) 2014; 400
Skittides, Früh (b0220) 2014; 69
Liu, Tian, Li (b0160) 2014; 89
Huang, Liu (b0225) 1971; 454
Wu, Huang (b0230) 2009; 1
Polat, Yildirim (b0265) 2008; 34
Monfared, Rastegar, Kojabadi (b0115) 2009; 34
Niknam, Sharifinia, Abaraghooee (b0210) 2013; 76
Poitras, Cormier (b0170) 2011; 35
Mishra, Shaw, Mishra (b0200) 2012; 4
Noorollahi, Jokar, Kalhor (b0085) 2016; 115
Niu, Sun, Wu, Yu, Wang (b0100) 2016; 40
Mohandes, Halawani, Rehman, Hussain (b0135) 2004; 29
Lydia, Kumar, Selvakumar, Kumar (b0080) 2016; 112
Liu, Chen, Tian, Li (b0150) 2012; 48
Lei, Shiyan, Chuanwen, Hongling, Yan (b0045) 2009; 13
Liu, Tian, Li, Zhang (b0020) 2015; 92
Zhang, Wei, Zhao, Liu, Zhang (b0030) 2016; 126
Xiao, Shao, Liang, Wang (b0125) 2016; 167
Specht (b0260) 1991; 2
Sfetsos (b0130) 2000; 21
Yang (b0185) 2010; vol. 284
Xiao, Shao, Wang, Zhang, Lu (b0105) 2016; 180
Yesilbudak, Sagiroglu, Colak (b0005) 2013; 69
Alexiadis, Dokopoulos, Sahsamanoglou, Manousaridis (b0055) 1998; 63
Wang Y, Wang S, Zhang N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. Presented at the IEEE power and energy society general meeting; 2013.
Liu, Tian, Li (b0035) 2015; 100
Chen, Qian, Meng (b0140) 2013
Negnevitsky, Potter (b0060) 2006
Xiao, Wang, Yang, Xiao (b0075) 2015; 64
Ma, Luan, Jiang, Liu, Zhang (b0070) 2009; 13
Liu, Tian, Pan, Li (b0145) 2013; 107
Guo, Zhu (b0255) 2000; 40
Carro-Calvo, Salcedo-Sanz, Prieto, Kirchner-Bossi, Portilla-Figueras, Jiménez-Fernández (b0175) 2012; 89
Landberg (b0050) 1999; 80
Chen, Hou (b0280) 2002; 2
Liu, Tian, Chen, Li (b0165) 2013; 52
Cadenas, Rivera (b0120) 2009; 34
Sambariya, Prasad (b0215) 2014; 61
Barbounis, Theocharis (b0090) 2007; 70
Meng, Ge, Yin, Chen (b0010) 2016; 114
Xiao, Wang, Hou, Wu (b0180) 2015; 82
Yang (b0190) 2013; 5
Yang (b0245) 2011; 3
Yang (b0240) 2010; vol. 284
Focken, Lange, Moonnich, Waldl, Georg Beyer, Luig (b0095) 2002; 90
Diebold, Mariano (b0275) 1995; 13
Hecht-Nielsen SR. Kolmogorov’s mapping neural network existence theorem. In: IEEE joint conf on neural networks, New York, USA, vol. 3; 1987. p. 11–4.
Shen, Chao, Zhao (b0250) 2015; 167
Musikapun, Pongcharoen (b0205) 2012; vol. 35
Su, Wang, Lu, Zhao (b0110) 2014; 85
10.1016/j.enconman.2017.04.012_b0155
Guo (10.1016/j.enconman.2017.04.012_b0255) 2000; 40
Landberg (10.1016/j.enconman.2017.04.012_b0050) 1999; 80
Yang (10.1016/j.enconman.2017.04.012_b0185) 2010; vol. 284
Carro-Calvo (10.1016/j.enconman.2017.04.012_b0175) 2012; 89
Musikapun (10.1016/j.enconman.2017.04.012_b0205) 2012; vol. 35
Sambariya (10.1016/j.enconman.2017.04.012_b0215) 2014; 61
10.1016/j.enconman.2017.04.012_b0270
Specht (10.1016/j.enconman.2017.04.012_b0260) 1991; 2
Liu (10.1016/j.enconman.2017.04.012_b0160) 2014; 89
Lydia (10.1016/j.enconman.2017.04.012_b0080) 2016; 112
Shen (10.1016/j.enconman.2017.04.012_b0250) 2015; 167
Xiao (10.1016/j.enconman.2017.04.012_b0180) 2015; 82
Ma (10.1016/j.enconman.2017.04.012_b0070) 2009; 13
Lei (10.1016/j.enconman.2017.04.012_b0045) 2009; 13
Huang (10.1016/j.enconman.2017.04.012_b0225) 1971; 454
Liu (10.1016/j.enconman.2017.04.012_b0165) 2013; 52
Mohandes (10.1016/j.enconman.2017.04.012_b0135) 2004; 29
Xiao (10.1016/j.enconman.2017.04.012_b0075) 2015; 64
Riahy (10.1016/j.enconman.2017.04.012_b0065) 2008; 33
Liu (10.1016/j.enconman.2017.04.012_b0150) 2012; 48
Su (10.1016/j.enconman.2017.04.012_b0110) 2014; 85
Barbounis (10.1016/j.enconman.2017.04.012_b0090) 2007; 70
Wu (10.1016/j.enconman.2017.04.012_b0230) 2009; 1
Focken (10.1016/j.enconman.2017.04.012_b0095) 2002; 90
Alexiadis (10.1016/j.enconman.2017.04.012_b0055) 1998; 63
Ozay (10.1016/j.enconman.2017.04.012_b0015) 2016; 121
Zhao (10.1016/j.enconman.2017.04.012_b0025) 2009; 34
Zhang (10.1016/j.enconman.2017.04.012_b0030) 2016; 126
Yang (10.1016/j.enconman.2017.04.012_b0240) 2010; vol. 284
Zhou (10.1016/j.enconman.2017.04.012_b0040) 2011; 52
Cadenas (10.1016/j.enconman.2017.04.012_b0120) 2009; 34
Skittides (10.1016/j.enconman.2017.04.012_b0220) 2014; 69
Poitras (10.1016/j.enconman.2017.04.012_b0170) 2011; 35
Sfetsos (10.1016/j.enconman.2017.04.012_b0130) 2000; 21
Du (10.1016/j.enconman.2017.04.012_b0195) 2012; 203
Noorollahi (10.1016/j.enconman.2017.04.012_b0085) 2016; 115
Chen (10.1016/j.enconman.2017.04.012_b0140) 2013
Yesilbudak (10.1016/j.enconman.2017.04.012_b0005) 2013; 69
Liu (10.1016/j.enconman.2017.04.012_b0020) 2015; 92
Niu (10.1016/j.enconman.2017.04.012_b0100) 2016; 40
Niknam (10.1016/j.enconman.2017.04.012_b0210) 2013; 76
Diebold (10.1016/j.enconman.2017.04.012_b0275) 1995; 13
Chen (10.1016/j.enconman.2017.04.012_b0280) 2002; 2
Yang (10.1016/j.enconman.2017.04.012_b0245) 2011; 3
Liu (10.1016/j.enconman.2017.04.012_b0035) 2015; 100
Negnevitsky (10.1016/j.enconman.2017.04.012_b0060) 2006
Meng (10.1016/j.enconman.2017.04.012_b0010) 2016; 114
Wang (10.1016/j.enconman.2017.04.012_b0235) 2014; 400
Xiao (10.1016/j.enconman.2017.04.012_b0125) 2016; 167
Polat (10.1016/j.enconman.2017.04.012_b0265) 2008; 34
Xiao (10.1016/j.enconman.2017.04.012_b0105) 2016; 180
Monfared (10.1016/j.enconman.2017.04.012_b0115) 2009; 34
Mishra (10.1016/j.enconman.2017.04.012_b0200) 2012; 4
Liu (10.1016/j.enconman.2017.04.012_b0145) 2013; 107
Yang (10.1016/j.enconman.2017.04.012_b0190) 2013; 5
References_xml – year: 2013
  ident: b0140
  article-title: Multi-step wind speed forecasting based on wavelet and gaussian processes
  publication-title: Math Probl Eng
– volume: 48
  start-page: 545
  year: 2012
  end-page: 556
  ident: b0150
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew Energy
– volume: 64
  start-page: 311
  year: 2015
  end-page: 327
  ident: b0075
  article-title: A hybrid model based on data preprocessing for electrical power forecasting
  publication-title: Int J Electr Power Energy Syst
– volume: vol. 284
  start-page: 65
  year: 2010
  end-page: 74
  ident: b0185
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence
– volume: 61
  start-page: 229
  year: 2014
  end-page: 238
  ident: b0215
  article-title: Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 70
  start-page: 1525
  year: 2007
  end-page: 1542
  ident: b0090
  article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
  publication-title: Neurocomputing
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  ident: b0260
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Networks
– reference: Hecht-Nielsen SR. Kolmogorov’s mapping neural network existence theorem. In: IEEE joint conf on neural networks, New York, USA, vol. 3; 1987. p. 11–4.
– volume: 52
  start-page: 161
  year: 2013
  end-page: 173
  ident: b0165
  article-title: An experimental investigation of two WaveletMLP hybrid frameworks for wind speed prediction using GA and PSO optimization
  publication-title: Int J Electr Power Energy Syst
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b0275
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
– volume: 69
  start-page: 77
  year: 2013
  end-page: 86
  ident: b0005
  article-title: A new approach to very short term wind speed prediction using k-nearest neighbor classification
  publication-title: Energy Convers Manage
– volume: 85
  start-page: 443
  year: 2014
  end-page: 452
  ident: b0110
  article-title: A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 167
  start-page: 243
  year: 2015
  end-page: 253
  ident: b0250
  article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method
  publication-title: Neurocomputing
– volume: 52
  start-page: 1990
  year: 2011
  end-page: 1998
  ident: b0040
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 107
  start-page: 191
  year: 2013
  end-page: 208
  ident: b0145
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl Energy
– volume: 34
  start-page: 845
  year: 2009
  end-page: 848
  ident: b0115
  article-title: A new strategy for wind speed forecasting using artificial intelligent methods
  publication-title: Renew Energy
– volume: 89
  start-page: 1
  year: 2014
  end-page: 11
  ident: b0160
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b0045
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
– volume: 114
  start-page: 75
  year: 2016
  end-page: 88
  ident: b0010
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers Manage
– volume: 4
  start-page: 802
  year: 2012
  end-page: 806
  ident: b0200
  article-title: A new meta-heuristic bat inspired classification approach for microarray data
  publication-title: Procedia Technol
– volume: 34
  start-page: 845
  year: 2008
  end-page: 849
  ident: b0265
  article-title: Hand geometry identification without feature extraction by general regression neural network
  publication-title: Expert Syst Appl
– volume: 2
  start-page: 006
  year: 2002
  ident: b0280
  article-title: Research on superior combination forecasting model based on forecasting effective measure
  publication-title: J Univ Sci Technol China
– volume: 35
  start-page: 369
  year: 2011
  end-page: 380
  ident: b0170
  article-title: Wind speed prediction for a target station using neural networks and particle swarm optimization
  publication-title: Wind Eng
– volume: vol. 35
  start-page: 98
  year: 2012
  end-page: 102
  ident: b0205
  article-title: Solving multi-stage multi-machine multiproduct scheduling problem using bat algorithm
  publication-title: Second international conference on management and artificial intelligence (IPEDR)
– volume: 76
  start-page: 1015
  year: 2013
  end-page: 1028
  ident: b0210
  article-title: A new enhanced bat-inspired algorithm for finding linear supply function equilibrium of GENCOs in the competitive electricity market
  publication-title: Energy Convers Manage
– volume: 90
  start-page: 231
  year: 2002
  end-page: 246
  ident: b0095
  article-title: Short-term prediction of the aggregated power output of wind farms – a statistical analysis of the reduction of the prediction error by spatial smoothing effects
  publication-title: J Wind Eng Ind Aerodyn
– volume: 40
  start-page: 4079
  year: 2016
  end-page: 4093
  ident: b0100
  article-title: An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting
  publication-title: Appl Math Model
– volume: 203
  start-page: 88
  year: 2012
  end-page: 93
  ident: b0195
  article-title: Image matching using a bat algorithm with mutation
  publication-title: Appl Mech Mater
– volume: 21
  start-page: 23
  year: 2000
  end-page: 35
  ident: b0130
  article-title: A comparison of various forecasting techniques applied to mean hourly wind speed time series
  publication-title: Renew Energy
– volume: 126
  start-page: 1084
  year: 2016
  end-page: 1092
  ident: b0030
  article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction
  publication-title: Energy Convers Manage
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: b0070
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
– volume: 112
  start-page: 115
  year: 2016
  end-page: 124
  ident: b0080
  article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 82
  start-page: 524
  year: 2015
  end-page: 549
  ident: b0180
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
– volume: 80
  start-page: 207
  year: 1999
  end-page: 220
  ident: b0050
  article-title: Short-term prediction of the power production from wind farms
  publication-title: J Wind Eng Ind Aerodyn
– volume: 454
  start-page: 903
  year: 1971
  ident: b0225
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc Roy Soc A Math Phys Eng Sci
– volume: 92
  start-page: 67
  year: 2015
  end-page: 81
  ident: b0020
  article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
  publication-title: Energy Convers Manage
– volume: 63
  start-page: 61
  year: 1998
  end-page: 68
  ident: b0055
  article-title: Short term forecasting of wind speed and related electrical power
  publication-title: Sol Energy
– volume: 115
  start-page: 17
  year: 2016
  end-page: 25
  ident: b0085
  article-title: Using artificial neural networks for temporal and spatial wind speed forecasting in Iran
  publication-title: Energy Convers Manage
– volume: 89
  start-page: 347
  year: 2012
  end-page: 354
  ident: b0175
  article-title: Wind speed reconstruction from synoptic pressure patterns using an evolutionary algorithm
  publication-title: Appl Energy
– volume: 3
  start-page: 267
  year: 2011
  end-page: 274
  ident: b0245
  article-title: Bat algorithm for multiobjective optimization
  publication-title: Int J Bio-Inspired Comput
– start-page: 60
  year: 2006
  end-page: 65
  ident: b0060
  article-title: Innovative short-term wind generation prediction techniques
  publication-title: Proceedings of the power systems conference and exposition
– volume: 400
  start-page: 159
  year: 2014
  end-page: 167
  ident: b0235
  article-title: On the computational complexity of the empirical mode decomposition algorithm
  publication-title: Physica A
– volume: 180
  start-page: 213
  year: 2016
  end-page: 233
  ident: b0105
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl Energy
– volume: 121
  start-page: 49
  year: 2016
  end-page: 54
  ident: b0015
  article-title: Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region
  publication-title: Energy Convers Manage
– volume: 34
  start-page: 2883
  year: 2009
  end-page: 2891
  ident: b0025
  article-title: Performance of wind power industry development in China: a DiamondModel study
  publication-title: Renew Energy
– volume: 100
  start-page: 16
  year: 2015
  end-page: 22
  ident: b0035
  article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
  publication-title: Energy Convers Manage
– volume: 69
  start-page: 365
  year: 2014
  end-page: 374
  ident: b0220
  article-title: Wind forecasting using Principal Component Analysis
  publication-title: Renew Energy
– volume: 5
  start-page: 141
  year: 2013
  end-page: 149
  ident: b0190
  article-title: Bat algorithm: literature review and applications
  publication-title: Int J Bio-Inspired Comput
– volume: 29
  start-page: 939
  year: 2004
  end-page: 947
  ident: b0135
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew Energy
– volume: 40
  start-page: 116
  year: 2000
  end-page: 119
  ident: b0255
  article-title: Evolutionary neural networks based on genetic algorithms
  publication-title: J Tsinghua Univ (Sci Technol)
– volume: vol. 284
  start-page: 65
  year: 2010
  end-page: 74
  ident: b0240
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature inspired cooperative strategies for optimization (NICSO), studies in computational intelligence
– volume: 33
  start-page: 35
  year: 2008
  end-page: 41
  ident: b0065
  article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method
  publication-title: Renew Energy
– volume: 167
  start-page: 135
  year: 2016
  end-page: 153
  ident: b0125
  article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting
  publication-title: Appl Energy
– volume: 34
  start-page: 274
  year: 2009
  end-page: 278
  ident: b0120
  article-title: Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
  publication-title: Renew Energy
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0230
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv Adapt Data Anal
– reference: Wang Y, Wang S, Zhang N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. Presented at the IEEE power and energy society general meeting; 2013.
– volume: 61
  start-page: 229
  year: 2014
  ident: 10.1016/j.enconman.2017.04.012_b0215
  article-title: Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.03.050
– volume: 13
  start-page: 253
  year: 1995
  ident: 10.1016/j.enconman.2017.04.012_b0275
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.1995.10524599
– volume: 69
  start-page: 77
  issue: 69
  year: 2013
  ident: 10.1016/j.enconman.2017.04.012_b0005
  article-title: A new approach to very short term wind speed prediction using k-nearest neighbor classification
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.01.033
– volume: 76
  start-page: 1015
  year: 2013
  ident: 10.1016/j.enconman.2017.04.012_b0210
  article-title: A new enhanced bat-inspired algorithm for finding linear supply function equilibrium of GENCOs in the competitive electricity market
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.08.012
– volume: 167
  start-page: 135
  year: 2016
  ident: 10.1016/j.enconman.2017.04.012_b0125
  article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.050
– volume: 80
  start-page: 207
  year: 1999
  ident: 10.1016/j.enconman.2017.04.012_b0050
  article-title: Short-term prediction of the power production from wind farms
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/S0167-6105(98)00192-5
– volume: 454
  start-page: 903
  year: 1971
  ident: 10.1016/j.enconman.2017.04.012_b0225
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc Roy Soc A Math Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– volume: 115
  start-page: 17
  year: 2016
  ident: 10.1016/j.enconman.2017.04.012_b0085
  article-title: Using artificial neural networks for temporal and spatial wind speed forecasting in Iran
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.02.041
– volume: 85
  start-page: 443
  issue: 9
  year: 2014
  ident: 10.1016/j.enconman.2017.04.012_b0110
  article-title: A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.05.058
– volume: 40
  start-page: 116
  issue: 10
  year: 2000
  ident: 10.1016/j.enconman.2017.04.012_b0255
  article-title: Evolutionary neural networks based on genetic algorithms
  publication-title: J Tsinghua Univ (Sci Technol)
– volume: 33
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.enconman.2017.04.012_b0065
  article-title: Short term wind speed forecasting for wind turbine applications using linear prediction method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.01.014
– volume: 64
  start-page: 311
  issue: 64
  year: 2015
  ident: 10.1016/j.enconman.2017.04.012_b0075
  article-title: A hybrid model based on data preprocessing for electrical power forecasting
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.07.029
– volume: 48
  start-page: 545
  year: 2012
  ident: 10.1016/j.enconman.2017.04.012_b0150
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.06.012
– volume: 92
  start-page: 67
  issue: 92
  year: 2015
  ident: 10.1016/j.enconman.2017.04.012_b0020
  article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.12.053
– volume: vol. 284
  start-page: 65
  year: 2010
  ident: 10.1016/j.enconman.2017.04.012_b0240
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 114
  start-page: 75
  year: 2016
  ident: 10.1016/j.enconman.2017.04.012_b0010
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.02.013
– volume: 40
  start-page: 4079
  issue: 5–6
  year: 2016
  ident: 10.1016/j.enconman.2017.04.012_b0100
  article-title: An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2015.11.030
– volume: 13
  start-page: 915
  year: 2009
  ident: 10.1016/j.enconman.2017.04.012_b0070
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– volume: 100
  start-page: 16
  year: 2015
  ident: 10.1016/j.enconman.2017.04.012_b0035
  article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.04.057
– volume: 69
  start-page: 365
  issue: September
  year: 2014
  ident: 10.1016/j.enconman.2017.04.012_b0220
  article-title: Wind forecasting using Principal Component Analysis
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.03.068
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  ident: 10.1016/j.enconman.2017.04.012_b0045
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.02.002
– start-page: 60
  year: 2006
  ident: 10.1016/j.enconman.2017.04.012_b0060
  article-title: Innovative short-term wind generation prediction techniques
– volume: 21
  start-page: 23
  issue: 1
  year: 2000
  ident: 10.1016/j.enconman.2017.04.012_b0130
  article-title: A comparison of various forecasting techniques applied to mean hourly wind speed time series
  publication-title: Renew Energy
  doi: 10.1016/S0960-1481(99)00125-1
– volume: 167
  start-page: 243
  year: 2015
  ident: 10.1016/j.enconman.2017.04.012_b0250
  article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.071
– volume: 2
  start-page: 568
  issue: 6
  year: 1991
  ident: 10.1016/j.enconman.2017.04.012_b0260
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.97934
– volume: 5
  start-page: 141
  issue: 3
  year: 2013
  ident: 10.1016/j.enconman.2017.04.012_b0190
  article-title: Bat algorithm: literature review and applications
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2013.055093
– volume: 400
  start-page: 159
  issue: 2
  year: 2014
  ident: 10.1016/j.enconman.2017.04.012_b0235
  article-title: On the computational complexity of the empirical mode decomposition algorithm
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.01.020
– volume: 34
  start-page: 845
  year: 2008
  ident: 10.1016/j.enconman.2017.04.012_b0265
  article-title: Hand geometry identification without feature extraction by general regression neural network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.10.032
– volume: 63
  start-page: 61
  issue: 1
  year: 1998
  ident: 10.1016/j.enconman.2017.04.012_b0055
  article-title: Short term forecasting of wind speed and related electrical power
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(98)00032-2
– volume: 52
  start-page: 1990
  issue: 4
  year: 2011
  ident: 10.1016/j.enconman.2017.04.012_b0040
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.11.007
– volume: 2
  start-page: 006
  year: 2002
  ident: 10.1016/j.enconman.2017.04.012_b0280
  article-title: Research on superior combination forecasting model based on forecasting effective measure
  publication-title: J Univ Sci Technol China
– volume: 82
  start-page: 524
  year: 2015
  ident: 10.1016/j.enconman.2017.04.012_b0180
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.063
– volume: 4
  start-page: 802
  year: 2012
  ident: 10.1016/j.enconman.2017.04.012_b0200
  article-title: A new meta-heuristic bat inspired classification approach for microarray data
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2012.05.131
– volume: 34
  start-page: 2883
  issue: 12
  year: 2009
  ident: 10.1016/j.enconman.2017.04.012_b0025
  article-title: Performance of wind power industry development in China: a DiamondModel study
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.06.008
– year: 2013
  ident: 10.1016/j.enconman.2017.04.012_b0140
  article-title: Multi-step wind speed forecasting based on wavelet and gaussian processes
  publication-title: Math Probl Eng
– volume: 107
  start-page: 191
  year: 2013
  ident: 10.1016/j.enconman.2017.04.012_b0145
  article-title: Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.02.002
– volume: 121
  start-page: 49
  year: 2016
  ident: 10.1016/j.enconman.2017.04.012_b0015
  article-title: Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.05.026
– volume: 70
  start-page: 1525
  issue: 7/9
  year: 2007
  ident: 10.1016/j.enconman.2017.04.012_b0090
  article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.01.032
– ident: 10.1016/j.enconman.2017.04.012_b0155
– volume: 3
  start-page: 267
  issue: 5
  year: 2011
  ident: 10.1016/j.enconman.2017.04.012_b0245
  article-title: Bat algorithm for multiobjective optimization
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2011.042259
– volume: 126
  start-page: 1084
  year: 2016
  ident: 10.1016/j.enconman.2017.04.012_b0030
  article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.08.086
– volume: 35
  start-page: 369
  issue: 3
  year: 2011
  ident: 10.1016/j.enconman.2017.04.012_b0170
  article-title: Wind speed prediction for a target station using neural networks and particle swarm optimization
  publication-title: Wind Eng
  doi: 10.1260/0309-524X.35.3.369
– volume: 52
  start-page: 161
  issue: 1
  year: 2013
  ident: 10.1016/j.enconman.2017.04.012_b0165
  article-title: An experimental investigation of two WaveletMLP hybrid frameworks for wind speed prediction using GA and PSO optimization
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.03.034
– volume: 203
  start-page: 88
  year: 2012
  ident: 10.1016/j.enconman.2017.04.012_b0195
  article-title: Image matching using a bat algorithm with mutation
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.203.88
– volume: 112
  start-page: 115
  year: 2016
  ident: 10.1016/j.enconman.2017.04.012_b0080
  article-title: Linear and non-linear autoregressive models for short-term wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.01.007
– volume: 90
  start-page: 231
  issue: 3
  year: 2002
  ident: 10.1016/j.enconman.2017.04.012_b0095
  article-title: Short-term prediction of the aggregated power output of wind farms – a statistical analysis of the reduction of the prediction error by spatial smoothing effects
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/S0167-6105(01)00222-7
– volume: 89
  start-page: 347
  issue: 1
  year: 2012
  ident: 10.1016/j.enconman.2017.04.012_b0175
  article-title: Wind speed reconstruction from synoptic pressure patterns using an evolutionary algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.07.044
– volume: vol. 35
  start-page: 98
  year: 2012
  ident: 10.1016/j.enconman.2017.04.012_b0205
  article-title: Solving multi-stage multi-machine multiproduct scheduling problem using bat algorithm
– volume: vol. 284
  start-page: 65
  year: 2010
  ident: 10.1016/j.enconman.2017.04.012_b0185
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 89
  start-page: 1
  year: 2014
  ident: 10.1016/j.enconman.2017.04.012_b0160
  article-title: Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.09.060
– volume: 34
  start-page: 845
  year: 2009
  ident: 10.1016/j.enconman.2017.04.012_b0115
  article-title: A new strategy for wind speed forecasting using artificial intelligent methods
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.04.017
– volume: 29
  start-page: 939
  year: 2004
  ident: 10.1016/j.enconman.2017.04.012_b0135
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2003.11.009
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  ident: 10.1016/j.enconman.2017.04.012_b0230
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv Adapt Data Anal
  doi: 10.1142/S1793536909000047
– volume: 34
  start-page: 274
  issue: 1
  year: 2009
  ident: 10.1016/j.enconman.2017.04.012_b0120
  article-title: Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.03.014
– volume: 180
  start-page: 213
  issue: C
  year: 2016
  ident: 10.1016/j.enconman.2017.04.012_b0105
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.113
– ident: 10.1016/j.enconman.2017.04.012_b0270
SSID ssj0003506
Score 2.5340981
Snippet •Propose a hybrid architecture based on a modified bat algorithm for multi-step wind speed forecasting.•Improve the accuracy of multi-step wind speed...
As one of the most promising sustainable energy sources, wind energy plays an important role in energy development because of its cleanliness without causing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 410
SubjectTerms Algorithms
Architecture
case studies
China
Chiroptera
Controllability
data collection
energy
Energy sources
Forecasting
General regression neural networks
Hybrid forecasting architecture
Improved bat algorithm
Mathematical models
Neural networks
pollution
Power plants
Regression analysis
Singular spectrum analysis, wind speed forecasting
Spectrum analysis
Sustainable energy
Weather forecasting
Wind power
Wind speed
Title Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm
URI https://dx.doi.org/10.1016/j.enconman.2017.04.012
https://www.proquest.com/docview/2024483897
https://www.proquest.com/docview/2000473939
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELYQe9ke0NiYVlaQJ-3VNK4dO3lEFagMwcuGxJt1dpzRCtKqDUK88Nu5SxNWkBAPPCb2JdH5cvclvvuOsV8-CznhYJHYmAktMy-Ig0RYA94WylrVEM-fnZvxhf59mV5usFFXC0Npla3vX_n0xlu3ZwatNgfzyWTwh5hdsjzREo0ULZMqyrW21MXg4OF_modKm_6aNFnQ7LUq4ekBcUVWN0A8qNI2lKdy-FqAeuGqm_hz_JlttcCRH66ebZttxOoL-7RGJ_iVTZtqWoHrNud3-K3Nl3OMTRxhaQywpPxmTkGr4LOKA7-6p2KtZ6Pruwoc8AJQ8Unz1wGFPNQcrv_NFpP66maHXRwf_R2NRdtLQQQtdS2kDgjFQGbBau9jVgRpAFIZS-ONLKzxEZGZKhIwHoYq9zIJKUgIJSQRx9U3tlnNqvidcRjKYJUaZmUatY8AymiQMhZpUSpTFj2Wdgp0oSUap34X167LKJu6TvGOFO8S7VDxPTZ4kpuvqDbelMi79XHPjMZhPHhTtt8tqGtf2yWOI9rJEMPZHvv5NIwvHO2iQBVntzSHGDZVrvLdd9z-B_tIR6vE3z7brBe3cQ_hTe33G_vdZx8OT07H548HPvxn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELWAHmgPFaVUbEupkXo1G8eOnRwrVLS0wKUgcbPGjgO7guyKDap66bd3JpvQBQlx4JrxJNF4PPMSzzwz9tXnoSAcLBIbc6Fl7gVxkAhrwNtSWata4vmTUzM61z8usosVdtD3wlBZZRf7FzG9jdbdlWFnzeFsPB7-ImaXvEi0RCdFz7Sr7JXOUktfYPt__9d5qKw9YJNGCxq-1CY82SeyyPoGiAhV2pbzVKZPZahHsbpNQIcb7G2HHPm3xcu9Yyux3mRvlvgE37NJ204rcOJm_Dd-bPP5DJMTR1waA8ypwJlT1ir5tObAr_5Qt9YD6fK2Age8AdR83P52QCUPDYfry-ntuLm62WLnh9_PDkaiO0xBBC11I6QOiMVA5sFq72NeBmkAMhkr440srfERoZkqEzAeUlV4mYQMJIQKkohy9YGt1dM6bjMOqQxWqTSvsqh9BFBGg5SxzMpKmaocsKw3oAsd0zgdeHHt-pKyiesN78jwLtEODT9gw3u92YJr41mNop8f98BrHCaEZ3V3-gl13bqdoxzhTo4gzg7Y3r0YVxxto0Adp3c0hig2VaGKjy94_Be2Pjo7OXbHR6c_P7HXJFlUAe-wteb2Ln5GrNP43daX_wHSiv38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-step+wind+speed+forecasting+based+on+a+hybrid+forecasting+architecture+and+an+improved+bat+algorithm&rft.jtitle=Energy+conversion+and+management&rft.au=Xiao%2C+Liye&rft.au=Qian%2C+Feng&rft.au=Shao%2C+Wei&rft.date=2017-07-01&rft.issn=0196-8904&rft.volume=143&rft.spage=410&rft.epage=430&rft_id=info:doi/10.1016%2Fj.enconman.2017.04.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2017_04_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon