Effective Determination of Mobile Agent Itineraries for Data Aggregation on Sensor Networks

A key feature of wireless sensor networks (WSNs) is the collaborative processing, where the correlation existing over the local data of sensor nodes (SNs) is exploited so that the total data volume can be reduced (data aggregation). The use of Mobile Agents (MAs), i.e., software entities able of mig...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 22; no. 12; pp. 1679 - 1693
Main Authors Konstantopoulos, Charalampos, Mpitziopoulos, A, Gavalas, D, Pantziou, G
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2010
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2009.203

Cover

More Information
Summary:A key feature of wireless sensor networks (WSNs) is the collaborative processing, where the correlation existing over the local data of sensor nodes (SNs) is exploited so that the total data volume can be reduced (data aggregation). The use of Mobile Agents (MAs), i.e., software entities able of migrating among nodes and resuming execution naturally, fits in this scenario; the local data of an SN can be combined with the data collected by an MA from other SNs in a way that depends on the specific program code of the MA. In this paper, we consider the problem of calculating near-optimal routes for MAs that incrementally aggregate the data as they visit the nodes in a distributed sensor network. Our algorithm follows a greedy-like approach always selecting the next node to be included in an itinerary in such a way that the cost of the so far formed itineraries is kept minimum at each step. Simulation results confirm the high effectiveness of the proposed algorithm as well as its performance gain over alternative approaches. Also, with the use of proper data structures, the computational complexity of the algorithm is kept low as it is formally proved in the paper.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2009.203