SA-MAC: Self-Stabilizing Adaptive MAC Protocol for Wireless Sensor Networks
A common method of prolonging the lifetime of wireless sensor networks is to use low power duty cycling protocol. Existing protocols consist of two categories: sender-initiated and receiver-initiated. In this paper, we present SA- MAC, a self-stabilizing adaptive MAC protocol for wireless sensor net...
Saved in:
| Published in | Journal of computer science and technology Vol. 29; no. 4; pp. 605 - 617 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Springer US
01.07.2014
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1000-9000 1860-4749 |
| DOI | 10.1007/s11390-014-1453-6 |
Cover
| Summary: | A common method of prolonging the lifetime of wireless sensor networks is to use low power duty cycling protocol. Existing protocols consist of two categories: sender-initiated and receiver-initiated. In this paper, we present SA- MAC, a self-stabilizing adaptive MAC protocol for wireless sensor networks. SA-MAC dynamically adjusts the transmission time-slot, waking up time-slot, and packet detection pattern according to current network working condition, such as packet length and wake-up patterns of neighboring nodes. In the long run, every sensor node will find its own transmission phase so that the network will enter a stable stage when the network load and qualities axe static. We conduct extensive experiments to evaluate the energy consumption, packet reception rate of SA-MAC in real sensor networking systems. Our results indicate that SA-MAC outperforms other existing protocols. |
|---|---|
| Bibliography: | 11-2296/TP duty cycling protocol, sender-initiated, receiver-initiated, SA-MAC A common method of prolonging the lifetime of wireless sensor networks is to use low power duty cycling protocol. Existing protocols consist of two categories: sender-initiated and receiver-initiated. In this paper, we present SA- MAC, a self-stabilizing adaptive MAC protocol for wireless sensor networks. SA-MAC dynamically adjusts the transmission time-slot, waking up time-slot, and packet detection pattern according to current network working condition, such as packet length and wake-up patterns of neighboring nodes. In the long run, every sensor node will find its own transmission phase so that the network will enter a stable stage when the network load and qualities axe static. We conduct extensive experiments to evaluate the energy consumption, packet reception rate of SA-MAC in real sensor networking systems. Our results indicate that SA-MAC outperforms other existing protocols. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1000-9000 1860-4749 |
| DOI: | 10.1007/s11390-014-1453-6 |