On‐Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines
Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here,...
        Saved in:
      
    
          | Published in | Advanced materials (Weinheim) Vol. 36; no. 18; pp. e2310084 - n/a | 
|---|---|
| Main Authors | , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Germany
          Wiley Subscription Services, Inc
    
        01.05.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0935-9648 1521-4095 1521-4095  | 
| DOI | 10.1002/adma.202310084 | 
Cover
| Abstract | Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high‐frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.
A magnetically driven microrobotic superstructure is designed for navigation in microscale environments. The superstructure consists of microhelices interlocked with a gelatin composite chassis containing iron oxide nanoparticles. The helices serve as the motion component, while the nanoparticles enable the gelatin to dissolve via magnetic hyperthermia. Upon dissolution, the helices are released and navigate through smaller conduits using a rotating field. | 
    
|---|---|
| AbstractList | Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, we propose a microrobotic superstructure, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). Our superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, we showcase the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field. This adaptable microrobotic superstructure reacts to different magnetic inputs, which could be used to perform complex delivery procedures within intricate regions of the human body. This article is protected by copyright. All rights reserved. Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high‐frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body. A magnetically driven microrobotic superstructure is designed for navigation in microscale environments. The superstructure consists of microhelices interlocked with a gelatin composite chassis containing iron oxide nanoparticles. The helices serve as the motion component, while the nanoparticles enable the gelatin to dissolve via magnetic hyperthermia. Upon dissolution, the helices are released and navigate through smaller conduits using a rotating field. Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body. Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high‐frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.  | 
    
| Author | Gantenbein, Valentin Chen, Xiang‐Zhong Franco, Carlos Ye, Hao Kim, Minsoo Nelson, Bradley J. Veciana, Andrea Llacer‐Wintle, Joaquin Puigmartí‐Luis, Josep Pané, Salvador Landers, Fabian C. Hertle, Lukas  | 
    
| Author_xml | – sequence: 1 givenname: Fabian C. orcidid: 0000-0002-6935-9391 surname: Landers fullname: Landers, Fabian C. organization: ETH Zurich – sequence: 2 givenname: Valentin orcidid: 0009-0004-8018-7326 surname: Gantenbein fullname: Gantenbein, Valentin organization: ETH Zurich – sequence: 3 givenname: Lukas surname: Hertle fullname: Hertle, Lukas organization: ETH Zurich – sequence: 4 givenname: Andrea surname: Veciana fullname: Veciana, Andrea organization: ETH Zurich – sequence: 5 givenname: Joaquin surname: Llacer‐Wintle fullname: Llacer‐Wintle, Joaquin organization: ETH Zurich – sequence: 6 givenname: Xiang‐Zhong surname: Chen fullname: Chen, Xiang‐Zhong organization: Yiwu Research Institute of Fudan University – sequence: 7 givenname: Hao surname: Ye fullname: Ye, Hao email: haoyeh@ethz.ch organization: ETH Zurich – sequence: 8 givenname: Carlos surname: Franco fullname: Franco, Carlos organization: ETH Zurich – sequence: 9 givenname: Josep surname: Puigmartí‐Luis fullname: Puigmartí‐Luis, Josep organization: Institució Catalana de Recerca i Estudis Avançats (ICREA) – sequence: 10 givenname: Minsoo surname: Kim fullname: Kim, Minsoo email: minkim@ethz.ch organization: ETH Zurich – sequence: 11 givenname: Bradley J. surname: Nelson fullname: Nelson, Bradley J. organization: ETH Zurich – sequence: 12 givenname: Salvador orcidid: 0000-0003-0147-8287 surname: Pané fullname: Pané, Salvador email: vidalp@ethz.ch organization: ETH Zurich  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38101447$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkM1u1DAURi1URKeFLUsUiQ2bTG3HSezlaAq0UqsuKGvLsW_AlX-CnbSaHY_AM_IkZJpSpEqoK-tK53zX9ztCByEGQOgtwWuCMT1Rxqs1xbSaJ85eoBWpKSkZFvUBWmFR1aVoGD9ERznfYIxFg5tX6LDiBBPG2hXyV-H3z1_b6L0Kpji1WeUMvnO7IvbFpdUpptjF0eriyzRAymOa9DglyEUfU3GdVMhDTGNxb4Ozt5AWVX0LsNfuM7zS322A_Bq97JXL8ObhPUZfP3283p6VF1efz7ebi1IzUrGy0T0HjRUY0THO5oEbCorytoNW1FXLWkJ5DcZg0zQN7g0RWmCmDGaC9ro6RidL7hQGtbtTzskhWa_SThIs98XJfXHysbjZ-LAYQ4o_Jsij9DZrcE4FiFOWVGAqGG8bMqPvn6A3cUphvkdW8_5a0LrdB757oKbOg3nc_7f6GWALMPeTc4Jeajuq0cYwJmXd_z-6fqI9e5lYhDvrYPcMLTenl5t_7h-NGrj7 | 
    
| CitedBy_id | crossref_primary_10_1002_adma_202402309 crossref_primary_10_3390_mi15040468 crossref_primary_10_1021_acsnano_4c10382 crossref_primary_10_1002_adem_202400307 crossref_primary_10_1002_adma_202404825  | 
    
| Cites_doi | 10.1126/sciadv.abb5696 10.1080/00387010701295950 10.1016/j.apmt.2021.101337 10.1016/j.colsurfb.2020.111385 10.1109/TMECH.2018.2876617 10.1177/0278364918784366 10.1039/C0NR00566E 10.1016/j.apmt.2017.04.006 10.1002/aisy.202000082 10.1002/adma.201503095 10.1038/s41467-020-19725-6 10.1007/s11947-017-1907-2 10.3390/pharmaceutics12070665 10.1039/C2NR32554C 10.1016/j.foodhyd.2016.08.009 10.1126/sciadv.abq8545 10.1021/acsnano.3c03723 10.1021/acsnano.0c05530 10.1002/adhm.202102253 10.1002/adfm.201903872 10.1002/mabi.200500076 10.1021/acs.langmuir.9b01192 10.1021/ja026501x 10.1038/s41578-020-00269-6 10.1002/smll.201805006 10.1021/acscentsci.7b00625 10.1002/aisy.202100279 10.1088/1361-6439/ab087d 10.1126/scirobotics.aav4317 10.1021/acsami.1c01742 10.1109/TBME.2012.2216264 10.1002/adfm.201707228 10.1146/annurev-control-042920-013322 10.1002/adma.201304098 10.1016/j.matdes.2023.111735 10.1002/adma.201705061 10.1002/adma.201970192 10.1109/JPROC.2022.3165713 10.1038/s41467-018-03705-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH This article is protected by copyright. All rights reserved. 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.  | 
    
| Copyright_xml | – notice: 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: This article is protected by copyright. All rights reserved. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.  | 
    
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1002/adma.202310084 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1521-4095 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10.1002/adma.202310084 38101447 10_1002_adma_202310084 ADMA202310084  | 
    
| Genre | article Journal Article  | 
    
| GrantInformation_xml | – fundername: Agencia Estatal de Investigación funderid: CEX2021‐001202‐M – fundername: Swiss National Science Foundation funderid: 200021L_197017 – fundername: Horizon 2020 Framework Programme funderid: 952152 – fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions funderid: 861145 – fundername: Eidgenössische Technische Hochschule Zürich funderid: 22‐2 ETH‐040  | 
    
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4134-6cf8ec0aed9b484f8e8d2ea287be79537471285edd0d6660fd19c904ad0492fc3 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 0935-9648 1521-4095  | 
    
| IngestDate | Wed Oct 29 11:50:40 EDT 2025 Thu Oct 02 11:22:37 EDT 2025 Sat Jul 26 01:18:56 EDT 2025 Thu Apr 03 07:06:22 EDT 2025 Thu Apr 24 23:06:34 EDT 2025 Thu Oct 09 00:18:44 EDT 2025 Wed Jan 22 17:20:49 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 18 | 
    
| Keywords | Magnetic hyperthermia Microrobots Magnetic navigation Targeted delivery Two-photon lithography  | 
    
| Language | English | 
    
| License | Attribution-NonCommercial This article is protected by copyright. All rights reserved. cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4134-6cf8ec0aed9b484f8e8d2ea287be79537471285edd0d6660fd19c904ad0492fc3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-6935-9391 0009-0004-8018-7326 0000-0003-0147-8287  | 
    
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202310084 | 
    
| PMID | 38101447 | 
    
| PQID | 3049592574 | 
    
| PQPubID | 2045203 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_adma_202310084 proquest_miscellaneous_2902948761 proquest_journals_3049592574 pubmed_primary_38101447 crossref_citationtrail_10_1002_adma_202310084 crossref_primary_10_1002_adma_202310084 wiley_primary_10_1002_adma_202310084_ADMA202310084  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-05-01 | 
    
| PublicationDateYYYYMMDD | 2024-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Germany | 
    
| PublicationPlace_xml | – name: Germany – name: Weinheim  | 
    
| PublicationTitle | Advanced materials (Weinheim) | 
    
| PublicationTitleAlternate | Adv Mater | 
    
| PublicationYear | 2024 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2017; 62 2022; 110 2021; 6 2018; 28 2019; 4 2019; 31 2023; 17 2010 2019; 35 2019; 15 2023; 227 2014; 26 2022; 26 2020; 14 2020; 12 2020; 11 2012; 59 2011; 3 2013; 5 2017; 9 2021; 13 2020; 6 2018; 9 2015; 27 2020; 2 2018; 4 2022; 4 2022; 5 2019; 24 2002; 124 2022; 8 2017; 10 2005; 5 2009; 9 2019; 29 2018; 30 2021; 197 2007; 40 2022; 11 2018; 37 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 Zhang L. (e_1_2_8_33_1) 2009; 9 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_30_1  | 
    
| References_xml | – volume: 17 year: 2023 publication-title: ACS Nano – volume: 27 start-page: 6644 year: 2015 publication-title: Adv. Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 197 year: 2021 publication-title: Colloids Surf., B – volume: 62 start-page: 191 year: 2017 publication-title: Food Hydrocoll. – volume: 59 start-page: 3104 year: 2012 publication-title: IEEE Trans. Biomed. Eng. – volume: 110 start-page: 1028 year: 2022 publication-title: Proc. IEEE Inst. Electr. Electron. Eng. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 9 start-page: 1410 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 10 year: 2009 publication-title: Nano Lett. – volume: 124 start-page: 8204 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 26 start-page: 952 year: 2014 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: J. Micromech. Microeng. – volume: 35 year: 2019 publication-title: Langmuir – volume: 11 start-page: 5957 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 665 year: 2020 publication-title: Pharmaceutics – volume: 5 start-page: 702 year: 2005 publication-title: Macromol. Biosci. – volume: 5 start-page: 279 year: 2022 publication-title: Annu. Rev. Control Robot Auton. Syst. – volume: 227 year: 2023 publication-title: Mater. Des. – volume: 24 start-page: 154 year: 2019 publication-title: IEEE ASME Trans. Mechatron. – volume: 15 year: 2019 publication-title: Small – start-page: 96 year: 2010 publication-title: Proc. IEEE Int. Conf. Robot Autom. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 26 year: 2022 publication-title: Appl. Mater. Today – volume: 5 start-page: 1259 year: 2013 publication-title: Nanoscale – volume: 6 start-page: 351 year: 2021 publication-title: Nat. Rev. Mater. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 2 year: 2020 publication-title: Adv. Intell. Syst. – volume: 4 start-page: 477 year: 2018 publication-title: ACS Cent. Sci. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2022 publication-title: Adv. Intell. Syst. – volume: 9 start-page: 37 year: 2017 publication-title: Appl. Mater. Today – volume: 3 start-page: 557 year: 2011 publication-title: Nanoscale – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 37 start-page: 912 year: 2018 publication-title: Int. J. Rob. Res. – volume: 4 year: 2019 publication-title: Sci. Robot. – volume: 40 start-page: 475 year: 2007 publication-title: Spectrosc. Lett. – volume: 11 year: 2022 publication-title: Adv. Healthcare Mater. – volume: 10 start-page: 1441 year: 2017 publication-title: Food Bioproc. Tech. – ident: e_1_2_8_12_1 doi: 10.1126/sciadv.abb5696 – ident: e_1_2_8_37_1 doi: 10.1080/00387010701295950 – ident: e_1_2_8_16_1 doi: 10.1016/j.apmt.2021.101337 – ident: e_1_2_8_41_1 doi: 10.1016/j.colsurfb.2020.111385 – ident: e_1_2_8_29_1 doi: 10.1109/TMECH.2018.2876617 – ident: e_1_2_8_40_1 doi: 10.1016/j.colsurfb.2020.111385 – ident: e_1_2_8_30_1 doi: 10.1177/0278364918784366 – ident: e_1_2_8_24_1 doi: 10.1039/C0NR00566E – volume: 9 start-page: 10 year: 2009 ident: e_1_2_8_33_1 publication-title: Nano Lett. – ident: e_1_2_8_4_1 doi: 10.1016/j.apmt.2017.04.006 – ident: e_1_2_8_18_1 doi: 10.1002/aisy.202000082 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201503095 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-020-19725-6 – ident: e_1_2_8_39_1 doi: 10.1007/s11947-017-1907-2 – ident: e_1_2_8_10_1 doi: 10.3390/pharmaceutics12070665 – ident: e_1_2_8_26_1 doi: 10.1039/C2NR32554C – ident: e_1_2_8_38_1 doi: 10.1016/j.foodhyd.2016.08.009 – ident: e_1_2_8_14_1 doi: 10.1126/sciadv.abq8545 – ident: e_1_2_8_20_1 doi: 10.1021/acsnano.3c03723 – ident: e_1_2_8_21_1 doi: 10.1021/acsnano.0c05530 – ident: e_1_2_8_11_1 doi: 10.1002/adhm.202102253 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.201903872 – ident: e_1_2_8_35_1 doi: 10.1002/mabi.200500076 – ident: e_1_2_8_28_1 doi: 10.1021/acs.langmuir.9b01192 – ident: e_1_2_8_36_1 doi: 10.1021/ja026501x – ident: e_1_2_8_22_1 doi: 10.1038/s41578-020-00269-6 – ident: e_1_2_8_31_1 doi: 10.1002/smll.201805006 – ident: e_1_2_8_34_1 doi: 10.1021/acscentsci.7b00625 – ident: e_1_2_8_3_1 doi: 10.1002/aisy.202100279 – ident: e_1_2_8_6_1 doi: 10.1088/1361-6439/ab087d – ident: e_1_2_8_7_1 doi: 10.1126/scirobotics.aav4317 – ident: e_1_2_8_8_1 doi: 10.1021/acsami.1c01742 – ident: e_1_2_8_15_1 doi: 10.1109/TBME.2012.2216264 – ident: e_1_2_8_25_1 doi: 10.1002/adfm.201707228 – ident: e_1_2_8_1_1 doi: 10.1146/annurev-control-042920-013322 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201304098 – ident: e_1_2_8_2_1 doi: 10.1016/j.matdes.2023.111735 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201705061 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201970192 – ident: e_1_2_8_19_1 doi: 10.1109/JPROC.2022.3165713 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-018-03705-y  | 
    
| SSID | ssj0009606 | 
    
| Score | 2.5380747 | 
    
| Snippet | Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small... | 
    
| SourceID | unpaywall proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | e2310084 | 
    
| SubjectTerms | Dismantling Gelatin Helices Hyperthermia Iron oxides Locomotion Magnetic fields magnetic hyperthermia magnetic navigation Microrobots Nanocomposites Superstructures targeted delivery two‐photon lithography  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7QF64JuyUJCRkODiNnHsbHxcsVQV0hYkWKmcIju2EWI3WXUboXLiJ_Ab-SWM7SSiVKhI3GLFdhxnxvNebD8DPMeoZRBYSFrkOqdcpY4WGOdo4tLcMVtl1vhfA_Pj_GjB35yIky2Y9Xthoj7E8MPNe0YYr72Dr42L43w3u88OlAnaQR6jJAW_Btu5QEQ-gu3F8bvpxyCzlwkq83CIlo9USJek6LUbL1VwMTZdApw7cL2t1-r8q1ouL2LZEIwOb4HtXyOuQfmy357p_erbHwqP__uet-Fmh1bJNJrXHdiy9V3Y-U3D8B6s3tY_v__w-0xUbcjs8wbRuF3p5TlpHJn75X6njW6wPHnfrj3W9Hq1LZJ8gnCZDNrqJJTGpqJrxaLqU-03WMY6VmHNp93ch8Xh6w-vjmh3hgOtMDxymleusFWirJGaFxwThWFWIU_TdiJF5jkxK4Q1JjHIpBJnUlnJhCuD1IW5KnsAo7qp7UMgzCg7ERPMhxRPZ05WQiOB9xjLpUJnY6D91yurTuDcn7OxLKM0Myt9N5ZDN47hxZB_HaU9_ppzrzeGsnPxTennJ4XEEQ9vPxtuo3P6GRdV26bdlEwmTCIlzNMx7EYjGh4VpNU4n4zh5WBVV7aDBUu5Ils5nc2nQ-rRv9f_GG7gNY_rOfdghBZhnyDmOtNPO5f6BRRlJiY priority: 102 providerName: Unpaywall  | 
    
| Title | On‐Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202310084 https://www.ncbi.nlm.nih.gov/pubmed/38101447 https://www.proquest.com/docview/3049592574 https://www.proquest.com/docview/2902948761 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202310084  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 36 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-4095 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: ADMLS dateStart: 20120605 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S5NDmUJo-km0eqBBoLyK2LHut49JNCIFNQpKF9GQkSyqFXXupu5Tc-hP6G_tLMiPvOllKCfRiLKSxjGak-UaPTwCH6LUsAgvF88xkXOrY8xz9HI98nHnhysRZmhoYnWenY3l2m94-OsXf8kN0E27UM8J4TR1cm-bogTRU28AbRPgkyuUz2IixTrJxIS8faHezcLsmrfZxlcl8SdsYiaNV-VW39BfW3ITn82qm737qyWQVxgY_dPIKXi4AJBu0Gt-CNVe9hs1HtIJvYHpR_fn1m45-6Mqy4bcGAbKbmskdqz0b0Q6877WpUZ5dz2cE_4hCdo5xN0MEyzq6cxaksZXQ2ltR_bWiM4_tN6ZhG6Zr3sL45Pjm8ylfXKvAS_RYkmelz10ZaWeVkbnERG6F0xg6GddXaUJhqshTZ21kMbiJvI1VqSKpLUYTwpfJO1iv6srtABNWu37ax3IYdZnEqzI1GFMT7PFxapIe8GWrFuWCc5yuvpgULVuyKEgLRaeFHnzsys9ato1_ltxbKqlY9LqmoCXDVOEghNkfumzsL7QIoitXz5tCqEgojNKyuAfbrXK7qgLbmZT9HnzqtP3kf4hgDE8UKwbD0aBLvf8foV14ge-y3Wy5B-toG24fAdEPcxBsHp_DK3EAG-Pzy8GXe4lCBCg | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BOZQeUPnsQgEjIcHFauI43vi4aqkW6BYkWombZcc2qrSbrFhWqDd-Ar-RX8KMs5uyQqgSR8eeJPLYnvf88QzwEqOWR2CheaWc4tLmkVcY53gWcxVFqIvgaWpgcqrG5_Ld53K9m5DOwnT6EP2EG_WMNF5TB6cJ6YMr1VDrk3AQAZSskjfhllS5Iv4l5Mcr3V2Vrtek5T6ulazWuo2ZONi034xLf4HNHdheNnN7-d1Op5s4NgWi4124s0KQbNS5_C7cCM092PlDV_A-zD40v378pLMftvHs6GKBCDnM3PSStZFNaAve19a1aM8-LeeE_0hDdonEmyGEZb3eOUvWWE3Y3DtT-6WhQ4_dO2ZpH2ZYPIDz4zdnh2O-uleB1xiyJFd1rEKd2eC1k5XEROVFsMidXBjqsiCeKqoyeJ95ZDdZ9LmudSatRzohYl08hK2mbcIeMOFtGJZDLIe0yxVR16VDUk24J-alKwbA17Vq6pXoON19MTWdXLIw5AXTe2EAr_ry805u458l99dOMqtutzC0ZlhqHIUw-0WfjR2GVkFsE9rlwgidCY00TeUDeNQ5t_9UkjuTcjiA1723r_0PkRrDNcXM6Ggy6lOP_8foOWyPzyYn5uTt6fsncBufy27n5T5sYTsJTxEdfXPPUvv_DU8ABPs | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAeeJayUCBISHBJmzhONj6uWFblsQUBlbhFfiLU3WTFNkLlxE_gN_JLmLE3KQtCleCYeCaxnRnPN8n4C8AjjFoGgYWIy0IVMZepi0uMc3Hi0sIxqzNr6NXA9KDYP-QvPuRdNSHthQn8EP0LN_IMv16Tg9uFcXunrKHSeOIgAihJyc_DBZ6Lkqr6xm9PGaQIoHu6vSyPRcHLjrcxYXvr-utx6Q-wuQmX2nohT77I2Wwdx_pANLkKqhtCqD852m2P1a7--hu743-N8RpcWcHUaBTs6jqcs_UN2PyFvPAmzF_XP759pw0msjbR-NMSYbidq9lJ1LhoSnV-nxvVoH70rl0QyCSi2haz-whxctSTqkdeG_uJPhVU5ceadlaGa8x9saddbsHh5Nn7p_vx6ucNsca4yONCu9LqRFojFC85HpSGWYkJmrJDkWeUDLMyt8YkBlOoxJlUaJFwaTBnYU5nt2Cjbmp7GyJmpB3mQ5TD3E5lTuhcYeZO4MqlucoGEHePrtIrZnP6wcasCpzMrKJprPppHMDjXn4ROD3-KrnTWUK18u1lRR8mc4FLHTY_7JvRK-lTi6xt0y4rJhImMBcs0gFsBwvqb-U51TgfDuBJb1Jn9oN5MzlDrBqNp6P-6M6_KD2Ai2_Gk-rV84OXd-EynuahunMHNtBM7D1EYMfqvvexn5TtJk8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7QF64JuyUJCRkODiNnHsbHxcsVQV0hYkWKmcIju2EWI3WXUboXLiJ_Ab-SWM7SSiVKhI3GLFdhxnxvNebD8DPMeoZRBYSFrkOqdcpY4WGOdo4tLcMVtl1vhfA_Pj_GjB35yIky2Y9Xthoj7E8MPNe0YYr72Dr42L43w3u88OlAnaQR6jJAW_Btu5QEQ-gu3F8bvpxyCzlwkq83CIlo9USJek6LUbL1VwMTZdApw7cL2t1-r8q1ouL2LZEIwOb4HtXyOuQfmy357p_erbHwqP__uet-Fmh1bJNJrXHdiy9V3Y-U3D8B6s3tY_v__w-0xUbcjs8wbRuF3p5TlpHJn75X6njW6wPHnfrj3W9Hq1LZJ8gnCZDNrqJJTGpqJrxaLqU-03WMY6VmHNp93ch8Xh6w-vjmh3hgOtMDxymleusFWirJGaFxwThWFWIU_TdiJF5jkxK4Q1JjHIpBJnUlnJhCuD1IW5KnsAo7qp7UMgzCg7ERPMhxRPZ05WQiOB9xjLpUJnY6D91yurTuDcn7OxLKM0Myt9N5ZDN47hxZB_HaU9_ppzrzeGsnPxTennJ4XEEQ9vPxtuo3P6GRdV26bdlEwmTCIlzNMx7EYjGh4VpNU4n4zh5WBVV7aDBUu5Ils5nc2nQ-rRv9f_GG7gNY_rOfdghBZhnyDmOtNPO5f6BRRlJiY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-Command+Disassembly+of+Microrobotic+Superstructures+for+Transport+and+Delivery+of+Magnetic+Micromachines&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Landers%2C+Fabian+C&rft.au=Gantenbein%2C+Valentin&rft.au=Hertle%2C+Lukas&rft.au=Veciana%2C+Andrea&rft.date=2024-05-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=36&rft.issue=18&rft.spage=e2310084&rft_id=info:doi/10.1002%2Fadma.202310084&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |