On‐Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines

Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 18; pp. e2310084 - n/a
Main Authors Landers, Fabian C., Gantenbein, Valentin, Hertle, Lukas, Veciana, Andrea, Llacer‐Wintle, Joaquin, Chen, Xiang‐Zhong, Ye, Hao, Franco, Carlos, Puigmartí‐Luis, Josep, Kim, Minsoo, Nelson, Bradley J., Pané, Salvador
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202310084

Cover

Abstract Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high‐frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body. A magnetically driven microrobotic superstructure is designed for navigation in microscale environments. The superstructure consists of microhelices interlocked with a gelatin composite chassis containing iron oxide nanoparticles. The helices serve as the motion component, while the nanoparticles enable the gelatin to dissolve via magnetic hyperthermia. Upon dissolution, the helices are released and navigate through smaller conduits using a rotating field.
AbstractList Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, we propose a microrobotic superstructure, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). Our superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, we showcase the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field. This adaptable microrobotic superstructure reacts to different magnetic inputs, which could be used to perform complex delivery procedures within intricate regions of the human body. This article is protected by copyright. All rights reserved.
Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high‐frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body. A magnetically driven microrobotic superstructure is designed for navigation in microscale environments. The superstructure consists of microhelices interlocked with a gelatin composite chassis containing iron oxide nanoparticles. The helices serve as the motion component, while the nanoparticles enable the gelatin to dissolve via magnetic hyperthermia. Upon dissolution, the helices are released and navigate through smaller conduits using a rotating field.
Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.
Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high‐frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.
Author Gantenbein, Valentin
Chen, Xiang‐Zhong
Franco, Carlos
Ye, Hao
Kim, Minsoo
Nelson, Bradley J.
Veciana, Andrea
Llacer‐Wintle, Joaquin
Puigmartí‐Luis, Josep
Pané, Salvador
Landers, Fabian C.
Hertle, Lukas
Author_xml – sequence: 1
  givenname: Fabian C.
  orcidid: 0000-0002-6935-9391
  surname: Landers
  fullname: Landers, Fabian C.
  organization: ETH Zurich
– sequence: 2
  givenname: Valentin
  orcidid: 0009-0004-8018-7326
  surname: Gantenbein
  fullname: Gantenbein, Valentin
  organization: ETH Zurich
– sequence: 3
  givenname: Lukas
  surname: Hertle
  fullname: Hertle, Lukas
  organization: ETH Zurich
– sequence: 4
  givenname: Andrea
  surname: Veciana
  fullname: Veciana, Andrea
  organization: ETH Zurich
– sequence: 5
  givenname: Joaquin
  surname: Llacer‐Wintle
  fullname: Llacer‐Wintle, Joaquin
  organization: ETH Zurich
– sequence: 6
  givenname: Xiang‐Zhong
  surname: Chen
  fullname: Chen, Xiang‐Zhong
  organization: Yiwu Research Institute of Fudan University
– sequence: 7
  givenname: Hao
  surname: Ye
  fullname: Ye, Hao
  email: haoyeh@ethz.ch
  organization: ETH Zurich
– sequence: 8
  givenname: Carlos
  surname: Franco
  fullname: Franco, Carlos
  organization: ETH Zurich
– sequence: 9
  givenname: Josep
  surname: Puigmartí‐Luis
  fullname: Puigmartí‐Luis, Josep
  organization: Institució Catalana de Recerca i Estudis Avançats (ICREA)
– sequence: 10
  givenname: Minsoo
  surname: Kim
  fullname: Kim, Minsoo
  email: minkim@ethz.ch
  organization: ETH Zurich
– sequence: 11
  givenname: Bradley J.
  surname: Nelson
  fullname: Nelson, Bradley J.
  organization: ETH Zurich
– sequence: 12
  givenname: Salvador
  orcidid: 0000-0003-0147-8287
  surname: Pané
  fullname: Pané, Salvador
  email: vidalp@ethz.ch
  organization: ETH Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38101447$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1u1DAURi1URKeFLUsUiQ2bTG3HSezlaAq0UqsuKGvLsW_AlX-CnbSaHY_AM_IkZJpSpEqoK-tK53zX9ztCByEGQOgtwWuCMT1Rxqs1xbSaJ85eoBWpKSkZFvUBWmFR1aVoGD9ERznfYIxFg5tX6LDiBBPG2hXyV-H3z1_b6L0Kpji1WeUMvnO7IvbFpdUpptjF0eriyzRAymOa9DglyEUfU3GdVMhDTGNxb4Ozt5AWVX0LsNfuM7zS322A_Bq97JXL8ObhPUZfP3283p6VF1efz7ebi1IzUrGy0T0HjRUY0THO5oEbCorytoNW1FXLWkJ5DcZg0zQN7g0RWmCmDGaC9ro6RidL7hQGtbtTzskhWa_SThIs98XJfXHysbjZ-LAYQ4o_Jsij9DZrcE4FiFOWVGAqGG8bMqPvn6A3cUphvkdW8_5a0LrdB757oKbOg3nc_7f6GWALMPeTc4Jeajuq0cYwJmXd_z-6fqI9e5lYhDvrYPcMLTenl5t_7h-NGrj7
CitedBy_id crossref_primary_10_1002_adma_202402309
crossref_primary_10_3390_mi15040468
crossref_primary_10_1021_acsnano_4c10382
crossref_primary_10_1002_adem_202400307
crossref_primary_10_1002_adma_202404825
Cites_doi 10.1126/sciadv.abb5696
10.1080/00387010701295950
10.1016/j.apmt.2021.101337
10.1016/j.colsurfb.2020.111385
10.1109/TMECH.2018.2876617
10.1177/0278364918784366
10.1039/C0NR00566E
10.1016/j.apmt.2017.04.006
10.1002/aisy.202000082
10.1002/adma.201503095
10.1038/s41467-020-19725-6
10.1007/s11947-017-1907-2
10.3390/pharmaceutics12070665
10.1039/C2NR32554C
10.1016/j.foodhyd.2016.08.009
10.1126/sciadv.abq8545
10.1021/acsnano.3c03723
10.1021/acsnano.0c05530
10.1002/adhm.202102253
10.1002/adfm.201903872
10.1002/mabi.200500076
10.1021/acs.langmuir.9b01192
10.1021/ja026501x
10.1038/s41578-020-00269-6
10.1002/smll.201805006
10.1021/acscentsci.7b00625
10.1002/aisy.202100279
10.1088/1361-6439/ab087d
10.1126/scirobotics.aav4317
10.1021/acsami.1c01742
10.1109/TBME.2012.2216264
10.1002/adfm.201707228
10.1146/annurev-control-042920-013322
10.1002/adma.201304098
10.1016/j.matdes.2023.111735
10.1002/adma.201705061
10.1002/adma.201970192
10.1109/JPROC.2022.3165713
10.1038/s41467-018-03705-y
ContentType Journal Article
Copyright 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH
This article is protected by copyright. All rights reserved.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: This article is protected by copyright. All rights reserved.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
ADTOC
UNPAY
DOI 10.1002/adma.202310084
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10.1002/adma.202310084
38101447
10_1002_adma_202310084
ADMA202310084
Genre article
Journal Article
GrantInformation_xml – fundername: Agencia Estatal de Investigación
  funderid: CEX2021‐001202‐M
– fundername: Swiss National Science Foundation
  funderid: 200021L_197017
– fundername: Horizon 2020 Framework Programme
  funderid: 952152
– fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions
  funderid: 861145
– fundername: Eidgenössische Technische Hochschule Zürich
  funderid: 22‐2 ETH‐040
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c4134-6cf8ec0aed9b484f8e8d2ea287be79537471285edd0d6660fd19c904ad0492fc3
IEDL.DBID 24P
ISSN 0935-9648
1521-4095
IngestDate Wed Oct 29 11:50:40 EDT 2025
Thu Oct 02 11:22:37 EDT 2025
Sat Jul 26 01:18:56 EDT 2025
Thu Apr 03 07:06:22 EDT 2025
Thu Apr 24 23:06:34 EDT 2025
Thu Oct 09 00:18:44 EDT 2025
Wed Jan 22 17:20:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Magnetic hyperthermia
Microrobots
Magnetic navigation
Targeted delivery
Two-photon lithography
Language English
License Attribution-NonCommercial
This article is protected by copyright. All rights reserved.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4134-6cf8ec0aed9b484f8e8d2ea287be79537471285edd0d6660fd19c904ad0492fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6935-9391
0009-0004-8018-7326
0000-0003-0147-8287
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202310084
PMID 38101447
PQID 3049592574
PQPubID 2045203
PageCount 9
ParticipantIDs unpaywall_primary_10_1002_adma_202310084
proquest_miscellaneous_2902948761
proquest_journals_3049592574
pubmed_primary_38101447
crossref_citationtrail_10_1002_adma_202310084
crossref_primary_10_1002_adma_202310084
wiley_primary_10_1002_adma_202310084_ADMA202310084
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2022; 110
2021; 6
2018; 28
2019; 4
2019; 31
2023; 17
2010
2019; 35
2019; 15
2023; 227
2014; 26
2022; 26
2020; 14
2020; 12
2020; 11
2012; 59
2011; 3
2013; 5
2017; 9
2021; 13
2020; 6
2018; 9
2015; 27
2020; 2
2018; 4
2022; 4
2022; 5
2019; 24
2002; 124
2022; 8
2017; 10
2005; 5
2009; 9
2019; 29
2018; 30
2021; 197
2007; 40
2022; 11
2018; 37
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
Zhang L. (e_1_2_8_33_1) 2009; 9
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 27
  start-page: 6644
  year: 2015
  publication-title: Adv. Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 197
  year: 2021
  publication-title: Colloids Surf., B
– volume: 62
  start-page: 191
  year: 2017
  publication-title: Food Hydrocoll.
– volume: 59
  start-page: 3104
  year: 2012
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 110
  start-page: 1028
  year: 2022
  publication-title: Proc. IEEE Inst. Electr. Electron. Eng.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 9
  start-page: 1410
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 10
  year: 2009
  publication-title: Nano Lett.
– volume: 124
  start-page: 8204
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 26
  start-page: 952
  year: 2014
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: J. Micromech. Microeng.
– volume: 35
  year: 2019
  publication-title: Langmuir
– volume: 11
  start-page: 5957
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 665
  year: 2020
  publication-title: Pharmaceutics
– volume: 5
  start-page: 702
  year: 2005
  publication-title: Macromol. Biosci.
– volume: 5
  start-page: 279
  year: 2022
  publication-title: Annu. Rev. Control Robot Auton. Syst.
– volume: 227
  year: 2023
  publication-title: Mater. Des.
– volume: 24
  start-page: 154
  year: 2019
  publication-title: IEEE ASME Trans. Mechatron.
– volume: 15
  year: 2019
  publication-title: Small
– start-page: 96
  year: 2010
  publication-title: Proc. IEEE Int. Conf. Robot Autom.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 26
  year: 2022
  publication-title: Appl. Mater. Today
– volume: 5
  start-page: 1259
  year: 2013
  publication-title: Nanoscale
– volume: 6
  start-page: 351
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 2
  year: 2020
  publication-title: Adv. Intell. Syst.
– volume: 4
  start-page: 477
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2022
  publication-title: Adv. Intell. Syst.
– volume: 9
  start-page: 37
  year: 2017
  publication-title: Appl. Mater. Today
– volume: 3
  start-page: 557
  year: 2011
  publication-title: Nanoscale
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 37
  start-page: 912
  year: 2018
  publication-title: Int. J. Rob. Res.
– volume: 4
  year: 2019
  publication-title: Sci. Robot.
– volume: 40
  start-page: 475
  year: 2007
  publication-title: Spectrosc. Lett.
– volume: 11
  year: 2022
  publication-title: Adv. Healthcare Mater.
– volume: 10
  start-page: 1441
  year: 2017
  publication-title: Food Bioproc. Tech.
– ident: e_1_2_8_12_1
  doi: 10.1126/sciadv.abb5696
– ident: e_1_2_8_37_1
  doi: 10.1080/00387010701295950
– ident: e_1_2_8_16_1
  doi: 10.1016/j.apmt.2021.101337
– ident: e_1_2_8_41_1
  doi: 10.1016/j.colsurfb.2020.111385
– ident: e_1_2_8_29_1
  doi: 10.1109/TMECH.2018.2876617
– ident: e_1_2_8_40_1
  doi: 10.1016/j.colsurfb.2020.111385
– ident: e_1_2_8_30_1
  doi: 10.1177/0278364918784366
– ident: e_1_2_8_24_1
  doi: 10.1039/C0NR00566E
– volume: 9
  start-page: 10
  year: 2009
  ident: e_1_2_8_33_1
  publication-title: Nano Lett.
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apmt.2017.04.006
– ident: e_1_2_8_18_1
  doi: 10.1002/aisy.202000082
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201503095
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-020-19725-6
– ident: e_1_2_8_39_1
  doi: 10.1007/s11947-017-1907-2
– ident: e_1_2_8_10_1
  doi: 10.3390/pharmaceutics12070665
– ident: e_1_2_8_26_1
  doi: 10.1039/C2NR32554C
– ident: e_1_2_8_38_1
  doi: 10.1016/j.foodhyd.2016.08.009
– ident: e_1_2_8_14_1
  doi: 10.1126/sciadv.abq8545
– ident: e_1_2_8_20_1
  doi: 10.1021/acsnano.3c03723
– ident: e_1_2_8_21_1
  doi: 10.1021/acsnano.0c05530
– ident: e_1_2_8_11_1
  doi: 10.1002/adhm.202102253
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.201903872
– ident: e_1_2_8_35_1
  doi: 10.1002/mabi.200500076
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.langmuir.9b01192
– ident: e_1_2_8_36_1
  doi: 10.1021/ja026501x
– ident: e_1_2_8_22_1
  doi: 10.1038/s41578-020-00269-6
– ident: e_1_2_8_31_1
  doi: 10.1002/smll.201805006
– ident: e_1_2_8_34_1
  doi: 10.1021/acscentsci.7b00625
– ident: e_1_2_8_3_1
  doi: 10.1002/aisy.202100279
– ident: e_1_2_8_6_1
  doi: 10.1088/1361-6439/ab087d
– ident: e_1_2_8_7_1
  doi: 10.1126/scirobotics.aav4317
– ident: e_1_2_8_8_1
  doi: 10.1021/acsami.1c01742
– ident: e_1_2_8_15_1
  doi: 10.1109/TBME.2012.2216264
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.201707228
– ident: e_1_2_8_1_1
  doi: 10.1146/annurev-control-042920-013322
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.201304098
– ident: e_1_2_8_2_1
  doi: 10.1016/j.matdes.2023.111735
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201705061
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201970192
– ident: e_1_2_8_19_1
  doi: 10.1109/JPROC.2022.3165713
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-018-03705-y
SSID ssj0009606
Score 2.5380747
Snippet Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2310084
SubjectTerms Dismantling
Gelatin
Helices
Hyperthermia
Iron oxides
Locomotion
Magnetic fields
magnetic hyperthermia
magnetic navigation
Microrobots
Nanocomposites
Superstructures
targeted delivery
two‐photon lithography
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7QF64JuyUJCRkODiNnHsbHxcsVQV0hYkWKmcIju2EWI3WXUboXLiJ_Ab-SWM7SSiVKhI3GLFdhxnxvNebD8DPMeoZRBYSFrkOqdcpY4WGOdo4tLcMVtl1vhfA_Pj_GjB35yIky2Y9Xthoj7E8MPNe0YYr72Dr42L43w3u88OlAnaQR6jJAW_Btu5QEQ-gu3F8bvpxyCzlwkq83CIlo9USJek6LUbL1VwMTZdApw7cL2t1-r8q1ouL2LZEIwOb4HtXyOuQfmy357p_erbHwqP__uet-Fmh1bJNJrXHdiy9V3Y-U3D8B6s3tY_v__w-0xUbcjs8wbRuF3p5TlpHJn75X6njW6wPHnfrj3W9Hq1LZJ8gnCZDNrqJJTGpqJrxaLqU-03WMY6VmHNp93ch8Xh6w-vjmh3hgOtMDxymleusFWirJGaFxwThWFWIU_TdiJF5jkxK4Q1JjHIpBJnUlnJhCuD1IW5KnsAo7qp7UMgzCg7ERPMhxRPZ05WQiOB9xjLpUJnY6D91yurTuDcn7OxLKM0Myt9N5ZDN47hxZB_HaU9_ppzrzeGsnPxTennJ4XEEQ9vPxtuo3P6GRdV26bdlEwmTCIlzNMx7EYjGh4VpNU4n4zh5WBVV7aDBUu5Ils5nc2nQ-rRv9f_GG7gNY_rOfdghBZhnyDmOtNPO5f6BRRlJiY
  priority: 102
  providerName: Unpaywall
Title On‐Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202310084
https://www.ncbi.nlm.nih.gov/pubmed/38101447
https://www.proquest.com/docview/3049592574
https://www.proquest.com/docview/2902948761
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202310084
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S5NDmUJo-km0eqBBoLyK2LHut49JNCIFNQpKF9GQkSyqFXXupu5Tc-hP6G_tLMiPvOllKCfRiLKSxjGak-UaPTwCH6LUsAgvF88xkXOrY8xz9HI98nHnhysRZmhoYnWenY3l2m94-OsXf8kN0E27UM8J4TR1cm-bogTRU28AbRPgkyuUz2IixTrJxIS8faHezcLsmrfZxlcl8SdsYiaNV-VW39BfW3ITn82qm737qyWQVxgY_dPIKXi4AJBu0Gt-CNVe9hs1HtIJvYHpR_fn1m45-6Mqy4bcGAbKbmskdqz0b0Q6877WpUZ5dz2cE_4hCdo5xN0MEyzq6cxaksZXQ2ltR_bWiM4_tN6ZhG6Zr3sL45Pjm8ylfXKvAS_RYkmelz10ZaWeVkbnERG6F0xg6GddXaUJhqshTZ21kMbiJvI1VqSKpLUYTwpfJO1iv6srtABNWu37ax3IYdZnEqzI1GFMT7PFxapIe8GWrFuWCc5yuvpgULVuyKEgLRaeFHnzsys9ato1_ltxbKqlY9LqmoCXDVOEghNkfumzsL7QIoitXz5tCqEgojNKyuAfbrXK7qgLbmZT9HnzqtP3kf4hgDE8UKwbD0aBLvf8foV14ge-y3Wy5B-toG24fAdEPcxBsHp_DK3EAG-Pzy8GXe4lCBCg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BOZQeUPnsQgEjIcHFauI43vi4aqkW6BYkWombZcc2qrSbrFhWqDd-Ar-RX8KMs5uyQqgSR8eeJPLYnvf88QzwEqOWR2CheaWc4tLmkVcY53gWcxVFqIvgaWpgcqrG5_Ld53K9m5DOwnT6EP2EG_WMNF5TB6cJ6YMr1VDrk3AQAZSskjfhllS5Iv4l5Mcr3V2Vrtek5T6ulazWuo2ZONi034xLf4HNHdheNnN7-d1Op5s4NgWi4124s0KQbNS5_C7cCM092PlDV_A-zD40v378pLMftvHs6GKBCDnM3PSStZFNaAve19a1aM8-LeeE_0hDdonEmyGEZb3eOUvWWE3Y3DtT-6WhQ4_dO2ZpH2ZYPIDz4zdnh2O-uleB1xiyJFd1rEKd2eC1k5XEROVFsMidXBjqsiCeKqoyeJ95ZDdZ9LmudSatRzohYl08hK2mbcIeMOFtGJZDLIe0yxVR16VDUk24J-alKwbA17Vq6pXoON19MTWdXLIw5AXTe2EAr_ry805u458l99dOMqtutzC0ZlhqHIUw-0WfjR2GVkFsE9rlwgidCY00TeUDeNQ5t_9UkjuTcjiA1723r_0PkRrDNcXM6Ggy6lOP_8foOWyPzyYn5uTt6fsncBufy27n5T5sYTsJTxEdfXPPUvv_DU8ABPs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAeeJayUCBISHBJmzhONj6uWFblsQUBlbhFfiLU3WTFNkLlxE_gN_JLmLE3KQtCleCYeCaxnRnPN8n4C8AjjFoGgYWIy0IVMZepi0uMc3Hi0sIxqzNr6NXA9KDYP-QvPuRdNSHthQn8EP0LN_IMv16Tg9uFcXunrKHSeOIgAihJyc_DBZ6Lkqr6xm9PGaQIoHu6vSyPRcHLjrcxYXvr-utx6Q-wuQmX2nohT77I2Wwdx_pANLkKqhtCqD852m2P1a7--hu743-N8RpcWcHUaBTs6jqcs_UN2PyFvPAmzF_XP759pw0msjbR-NMSYbidq9lJ1LhoSnV-nxvVoH70rl0QyCSi2haz-whxctSTqkdeG_uJPhVU5ceadlaGa8x9saddbsHh5Nn7p_vx6ucNsca4yONCu9LqRFojFC85HpSGWYkJmrJDkWeUDLMyt8YkBlOoxJlUaJFwaTBnYU5nt2Cjbmp7GyJmpB3mQ5TD3E5lTuhcYeZO4MqlucoGEHePrtIrZnP6wcasCpzMrKJprPppHMDjXn4ROD3-KrnTWUK18u1lRR8mc4FLHTY_7JvRK-lTi6xt0y4rJhImMBcs0gFsBwvqb-U51TgfDuBJb1Jn9oN5MzlDrBqNp6P-6M6_KD2Ai2_Gk-rV84OXd-EynuahunMHNtBM7D1EYMfqvvexn5TtJk8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7QF64JuyUJCRkODiNnHsbHxcsVQV0hYkWKmcIju2EWI3WXUboXLiJ_Ab-SWM7SSiVKhI3GLFdhxnxvNebD8DPMeoZRBYSFrkOqdcpY4WGOdo4tLcMVtl1vhfA_Pj_GjB35yIky2Y9Xthoj7E8MPNe0YYr72Dr42L43w3u88OlAnaQR6jJAW_Btu5QEQ-gu3F8bvpxyCzlwkq83CIlo9USJek6LUbL1VwMTZdApw7cL2t1-r8q1ouL2LZEIwOb4HtXyOuQfmy357p_erbHwqP__uet-Fmh1bJNJrXHdiy9V3Y-U3D8B6s3tY_v__w-0xUbcjs8wbRuF3p5TlpHJn75X6njW6wPHnfrj3W9Hq1LZJ8gnCZDNrqJJTGpqJrxaLqU-03WMY6VmHNp93ch8Xh6w-vjmh3hgOtMDxymleusFWirJGaFxwThWFWIU_TdiJF5jkxK4Q1JjHIpBJnUlnJhCuD1IW5KnsAo7qp7UMgzCg7ERPMhxRPZ05WQiOB9xjLpUJnY6D91yurTuDcn7OxLKM0Myt9N5ZDN47hxZB_HaU9_ppzrzeGsnPxTennJ4XEEQ9vPxtuo3P6GRdV26bdlEwmTCIlzNMx7EYjGh4VpNU4n4zh5WBVV7aDBUu5Ils5nc2nQ-rRv9f_GG7gNY_rOfdghBZhnyDmOtNPO5f6BRRlJiY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-Command+Disassembly+of+Microrobotic+Superstructures+for+Transport+and+Delivery+of+Magnetic+Micromachines&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Landers%2C+Fabian+C&rft.au=Gantenbein%2C+Valentin&rft.au=Hertle%2C+Lukas&rft.au=Veciana%2C+Andrea&rft.date=2024-05-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=36&rft.issue=18&rft.spage=e2310084&rft_id=info:doi/10.1002%2Fadma.202310084&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon