On‐Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines

Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 18; pp. e2310084 - n/a
Main Authors Landers, Fabian C., Gantenbein, Valentin, Hertle, Lukas, Veciana, Andrea, Llacer‐Wintle, Joaquin, Chen, Xiang‐Zhong, Ye, Hao, Franco, Carlos, Puigmartí‐Luis, Josep, Kim, Minsoo, Nelson, Bradley J., Pané, Salvador
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202310084

Cover

More Information
Summary:Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high‐frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body. A magnetically driven microrobotic superstructure is designed for navigation in microscale environments. The superstructure consists of microhelices interlocked with a gelatin composite chassis containing iron oxide nanoparticles. The helices serve as the motion component, while the nanoparticles enable the gelatin to dissolve via magnetic hyperthermia. Upon dissolution, the helices are released and navigate through smaller conduits using a rotating field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202310084