A Puzzle-Based Genetic Algorithm with Block Mining and Recombination Heuristic for the Traveling Salesman Problem

In this research, we introduce a new heuristic approach using the concept of ant colony optimization (ACO) to extract patterns from the chromosomes generated by previous generations for solving the generalized traveling salesman problem. The proposed heuristic is composed of two phases. In the first...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 27; no. 5; pp. 937 - 949
Main Author 张百栈 黄伟修 张真真
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.09.2012
Springer Nature B.V
Department of Information Management, Yuan Ze University, Taoyuan 32026, Taiwan, China%Department of Computer Science, Xiamen University, Xiamen 361005, China
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-012-1275-3

Cover

More Information
Summary:In this research, we introduce a new heuristic approach using the concept of ant colony optimization (ACO) to extract patterns from the chromosomes generated by previous generations for solving the generalized traveling salesman problem. The proposed heuristic is composed of two phases. In the first phase the ACO technique is adopted to establish an archive consisting of a set of non-overlapping blocks and of a set of remaining cities (nodes) to be visited. The second phase is a block recombination phase where the set of blocks and the rest of cities are combined to form an artificial chromosome. The generated artificial chromosomes (ACs) will then be injected into a standard genetic algorithm (SGA) to speed up the convergence. The proposed method is called "Puzzle-Based Genetic Algorithm" or "p-ACGA". We demonstrate that p-ACGA performs very well on all TSPLIB problems, which have been solved to optimality by other researchers. The proposed approach can prevent the early convergence of the genetic algorithm (GA) and lead the algorithm to explore and exploit the search space by taking advantage of the artificial chromosomes.
Bibliography:11-2296/TP
artificial chromosome, blocks mining, block recombination, traveling salesman problem
In this research, we introduce a new heuristic approach using the concept of ant colony optimization (ACO) to extract patterns from the chromosomes generated by previous generations for solving the generalized traveling salesman problem. The proposed heuristic is composed of two phases. In the first phase the ACO technique is adopted to establish an archive consisting of a set of non-overlapping blocks and of a set of remaining cities (nodes) to be visited. The second phase is a block recombination phase where the set of blocks and the rest of cities are combined to form an artificial chromosome. The generated artificial chromosomes (ACs) will then be injected into a standard genetic algorithm (SGA) to speed up the convergence. The proposed method is called "Puzzle-Based Genetic Algorithm" or "p-ACGA". We demonstrate that p-ACGA performs very well on all TSPLIB problems, which have been solved to optimality by other researchers. The proposed approach can prevent the early convergence of the genetic algorithm (GA) and lead the algorithm to explore and exploit the search space by taking advantage of the artificial chromosomes.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1000-9000
1860-4749
DOI:10.1007/s11390-012-1275-3