Minimum control-switch motions for the snakeboard: a case study in kinematically controllable underactuated systems
We study the problem of computing an exact motion plan for the snakeboard, an underactuated system subject to nonholonomic constraints, by exploiting its kinematic controllability properties and its decoupling vector fields. Decoupling vector fields allow us to plan motions for the underactuated dyn...
Saved in:
Published in | IEEE transactions on robotics Vol. 20; no. 6; pp. 994 - 1006 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.12.2004
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1552-3098 1941-0468 |
DOI | 10.1109/TRO.2004.829455 |
Cover
Summary: | We study the problem of computing an exact motion plan for the snakeboard, an underactuated system subject to nonholonomic constraints, by exploiting its kinematic controllability properties and its decoupling vector fields. Decoupling vector fields allow us to plan motions for the underactuated dynamic system as if it were kinematic, and rest-to-rest paths are the concatenation of integral curves of the decoupling vector fields. These paths can then be time-scaled according to actuator limits to yield fast trajectories. Switches between decoupling vector fields must occur at zero velocity, so, to find fast trajectories, we wish to find paths minimizing the number of switches. In this paper, we solve the minimum-switch path-planning problem for the snakeboard. We consider two problems: 1) finding motion plans achieving a desired position and orientation of the body of the snakeboard and 2) the full problem of motion planning for all five configuration variables of the snakeboard. The first problem is solvable in closed form by geometric considerations, while the second problem is solved by a numerical approach with guaranteed convergence. We present a complete characterization of the snakeboard's minimum-switch paths. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2004.829455 |