Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?

Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (RO...

Full description

Saved in:
Bibliographic Details
Published inGenes Vol. 9; no. 4; p. 175
Main Authors Zsurka, Gábor, Peeva, Viktoriya, Kotlyar, Alexander, Kunz, Wolfram
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.03.2018
MDPI
Subjects
Online AccessGet full text
ISSN2073-4425
2073-4425
DOI10.3390/genes9040175

Cover

Abstract Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.
AbstractList Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.
Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H₂O₂ by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H₂O₂ by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.
Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO• radicals formed from H2O2 by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.
Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H 2 O 2 by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.
Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H₂O₂ by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.
Author Kotlyar, Alexander
Kunz, Wolfram
Zsurka, Gábor
Peeva, Viktoriya
AuthorAffiliation 3 Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; s2shak@tau.ac.il
1 Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany; gabor.zsurka@ukbonn.de (G.Z.); viktoriya.peeva@ukbonn.de (V.P.)
2 Department of Epileptology, University Bonn Medical Center, 53105 Bonn, Germany
AuthorAffiliation_xml – name: 2 Department of Epileptology, University Bonn Medical Center, 53105 Bonn, Germany
– name: 3 Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; s2shak@tau.ac.il
– name: 1 Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany; gabor.zsurka@ukbonn.de (G.Z.); viktoriya.peeva@ukbonn.de (V.P.)
Author_xml – sequence: 1
  givenname: Gábor
  orcidid: 0000-0002-6379-849X
  surname: Zsurka
  fullname: Zsurka, Gábor
– sequence: 2
  givenname: Viktoriya
  surname: Peeva
  fullname: Peeva, Viktoriya
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0003-0713-6499
  surname: Kotlyar
  fullname: Kotlyar, Alexander
– sequence: 4
  givenname: Wolfram
  orcidid: 0000-0003-1113-3493
  surname: Kunz
  fullname: Kunz, Wolfram
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29561808$$D View this record in MEDLINE/PubMed
BookMark eNptkU1PGzEQhi1ERShw67myxIVDt_X6Yze-gCKgBSkFKYSz5fXOJkaOHewNgn-PIz4UEL7Y0jzz6PXMd7TtgweEfpTkN2OS_JmBhyQJJ2UtttAuJTUrOKdie-M9QAcp3ZF8OKGEiB00oFJU5ZAMd9HkMuHpHCLgm946h0f-CU-CA9yFiK8fbat7-7AuRkgJW4__2z6YefBttNrhs6tRcQZL8C34Ho9m1s9O9tG3TrsEB6_3Hrr9ez49vSjG1_8uT0fjwvCS9kVDK8YNoy1vRadbkENNaAeUSSOh7hrJjBBAyVCYOgOV7FjFScMaZgynXLM9dPziXa6aBbQmJ4jaqWW0Cx2fVNBWfax4O1ez8KCEpFyUdRYcvQpiuF9B6tXCJgPOaQ9hlRTNUyVCcFZl9PATehdW0efvZYoTKbJxLfy5meg9ytu4M0BfABNDShE6ZWyfJxzWAa1TJVHrtarNteamX5-a3rxf4s_dsqNM
CitedBy_id crossref_primary_10_1002_ana_25510
crossref_primary_10_3390_nu16142195
crossref_primary_10_3389_fnagi_2022_827900
crossref_primary_10_1016_j_heliyon_2020_e04107
crossref_primary_10_1007_s11357_020_00158_4
crossref_primary_10_1167_iovs_18_24289
crossref_primary_10_13005_bbra_3226
crossref_primary_10_1016_j_bbagen_2019_06_010
crossref_primary_10_1007_s10571_022_01265_w
crossref_primary_10_1016_j_intimp_2023_110461
crossref_primary_10_31857_S0016675823110085
crossref_primary_10_1038_s41467_024_47867_4
crossref_primary_10_3389_fgene_2021_652497
crossref_primary_10_1167_iovs_61_12_3
crossref_primary_10_3390_nu11040872
crossref_primary_10_3389_fneur_2020_00881
crossref_primary_10_1098_rsbl_2020_0450
crossref_primary_10_3390_antiox10010055
crossref_primary_10_3390_biomedicines10020490
crossref_primary_10_1093_nar_gkac779
crossref_primary_10_1007_s11738_021_03326_x
crossref_primary_10_1111_acel_14282
crossref_primary_10_1134_S102279542311008X
crossref_primary_10_1371_journal_pone_0246114
crossref_primary_10_1007_s40572_021_00329_1
crossref_primary_10_3390_ani14192872
crossref_primary_10_3390_antiox12051087
crossref_primary_10_3390_genes14081534
crossref_primary_10_61958_NMVD5765
crossref_primary_10_1007_s10695_021_01037_1
crossref_primary_10_1093_mutage_geab003
crossref_primary_10_3390_biomedicines10051072
crossref_primary_10_1016_j_exger_2019_05_016
crossref_primary_10_1111_acel_13669
crossref_primary_10_1186_s12863_021_01005_x
crossref_primary_10_3233_JPD_201981
crossref_primary_10_3390_genes11010077
crossref_primary_10_1093_toxres_tfab066
crossref_primary_10_3390_ijms22105100
crossref_primary_10_3389_fcell_2020_575645
crossref_primary_10_1155_2019_6435364
crossref_primary_10_1016_j_jbc_2023_103018
crossref_primary_10_1242_bio_033852
crossref_primary_10_3389_fcell_2022_874596
crossref_primary_10_1002_advs_202303664
Cites_doi 10.1002/j.1460-2075.1992.tb05337.x
10.1093/hmg/ddm227
10.1073/pnas.1019581108
10.1152/ajpcell.00415.2007
10.1016/0014-5793(91)80347-6
10.1016/j.neuron.2015.06.034
10.1096/fj.00-0320com
10.1016/j.bbabio.2010.03.001
10.1016/S0891-5849(02)00787-6
10.1038/ng1769
10.1042/BJ20081386
10.1371/journal.pone.0176795
10.1038/srep06569
10.1016/j.cmet.2014.07.024
10.1002/1873-3468.12956
10.1016/B978-0-12-394625-6.00002-7
10.1080/10715760600913168
10.1007/s00401-016-1561-1
10.1038/nature12474
10.18632/aging.101174
10.1016/j.mito.2011.03.007
10.1016/0022-510X(90)90006-9
10.1002/ana.24709
10.1002/bip.22680
10.1038/ncomms13548
10.1111/acel.12212
10.1073/pnas.86.20.7952
10.1038/nature02517
10.1002/ana.23568
10.1002/hep.22791
10.1016/j.cmet.2016.09.017
10.1093/nar/gkh634
10.1172/JCI19435
10.1074/jbc.M607964200
10.1073/pnas.1006586107
10.1093/hmg/11.2.133
10.1038/ng.f.94
10.1042/bj3620137
10.1038/nature13886
10.1093/jexbot/51.353.2053
10.1002/ana.20736
10.1093/hmg/ddn437
10.1042/BST0351228
10.1073/pnas.072670199
10.1093/nar/gkp091
10.1016/j.bbagen.2008.09.008
10.1016/j.cmet.2011.11.012
10.3389/fphar.2014.00019
10.1042/bj3560061
10.1074/jbc.M607965200
10.1093/hmg/ddi082
10.1146/annurev-biochem-061516-045037
10.1038/88859
10.1152/physrev.00026.2013
10.1038/ng1292-324
10.1126/science.1112125
10.1074/jbc.M310341200
10.1002/ana.22109
10.1002/bies.201100050
10.1016/j.neurobiolaging.2017.10.024
10.1093/hmg/ddu336
10.1007/s00401-012-1001-9
10.1091/mbc.e15-05-0260
10.1111/j.1742-4658.2009.07269.x
10.1371/journal.pgen.1003974
10.1016/j.bbabio.2008.03.028
10.1073/pnas.0509776102
10.1002/cbic.200600311
10.1111/j.1474-9726.2006.00209.x
10.1038/ng1292-318
10.1371/journal.pgen.1003794
10.1146/annurev.bi.61.070192.005523
10.1002/1531-8249(200011)48:5<766::AID-ANA10>3.0.CO;2-M
10.1016/j.arr.2016.04.006
10.1042/EBC20160090
10.1093/nar/27.11.2434
10.1074/jbc.273.37.23690
10.1038/ng.863
10.1016/S0027-5107(98)00066-9
10.1523/JNEUROSCI.2211-13.2013
10.1371/journal.pone.0011468
10.1016/j.cmet.2015.04.005
10.1111/j.1474-9726.2010.00581.x
10.1016/j.tig.2010.05.006
10.1177/1073858415574600
10.1074/jbc.271.35.21177
10.1038/ng.95
10.1016/S0197-4580(96)00168-6
10.1038/ng1778
10.1039/C7MT00244K
10.1016/S0960-8966(01)00332-7
10.1111/j.1471-4159.2011.07581.x
ContentType Journal Article
Copyright Copyright MDPI AG 2018
2018 by the authors. 2018
Copyright_xml – notice: Copyright MDPI AG 2018
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.3390/genes9040175
DatabaseName CrossRef
PubMed
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
ProQuest Biological Science Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4425
ExternalDocumentID PMC5924517
29561808
10_3390_genes9040175
Genre Journal Article
Review
GroupedDBID ---
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADRAZ
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
HCIFZ
HYE
IAO
IPNFZ
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RIG
RPM
GROUPED_DOAJ
NPM
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c412t-b2634c32d4d5fade98a02fe239c9e7fb93c55e2085c75fa69f3640b3b3cc424a3
IEDL.DBID M48
ISSN 2073-4425
IngestDate Thu Aug 21 14:07:31 EDT 2025
Fri Sep 05 03:17:06 EDT 2025
Fri Jul 25 10:37:23 EDT 2025
Wed Feb 19 02:44:18 EST 2025
Tue Jul 01 02:54:45 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords aging
mitochondrial DNA
oxidative stress
reactive oxygen species
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-b2634c32d4d5fade98a02fe239c9e7fb93c55e2085c75fa69f3640b3b3cc424a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6379-849X
0000-0003-0713-6499
0000-0003-1113-3493
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/genes9040175
PMID 29561808
PQID 2040952457
PQPubID 2032392
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924517
proquest_miscellaneous_2017055436
proquest_journals_2040952457
pubmed_primary_29561808
crossref_citationtrail_10_3390_genes9040175
crossref_primary_10_3390_genes9040175
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180321
PublicationDateYYYYMMDD 2018-03-21
PublicationDate_xml – month: 3
  year: 2018
  text: 20180321
  day: 21
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Genes
PublicationTitleAlternate Genes (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Safdar (ref_63) 2011; 108
Itoh (ref_66) 1996; 17
Ross (ref_52) 2013; 501
Kraytsberg (ref_10) 2006; 38
Campbell (ref_81) 2012; 124
ref_58
Shoffner (ref_72) 1989; 86
Coller (ref_8) 2001; 28
ref_13
Bohr (ref_40) 2002; 32
Freudenthal (ref_43) 2015; 517
Bailey (ref_82) 2009; 37
Trifunovic (ref_14) 2004; 429
Fayet (ref_70) 2002; 12
Logan (ref_65) 2014; 13
Khrapko (ref_69) 1999; 27
Nissanka (ref_90) 2018; 592
Wiesner (ref_4) 2006; 40
Reichert (ref_36) 1978; 37
Rauen (ref_32) 2007; 8
Nido (ref_85) 2017; 63
Dutta (ref_94) 2006; 59
Alexeyev (ref_1) 2009; 276
Loeb (ref_59) 2005; 102
Kauppila (ref_3) 2017; 25
Tadi (ref_76) 2016; 27
Nido (ref_84) 2016; 7
Guliaeva (ref_37) 2006; 51
Pickrell (ref_55) 2015; 87
Fukui (ref_77) 2009; 18
Volmering (ref_49) 2016; 132
Du (ref_87) 2010; 107
Pletjushkina (ref_42) 2006; 71
Menzies (ref_12) 2009; 296
Soong (ref_6) 1992; 2
Shabalina (ref_64) 2017; 9
Petrat (ref_31) 2002; 362
Minetti (ref_44) 2015; 103
Kunz (ref_92) 2000; 48
Wallace (ref_16) 1992; 61
Genoud (ref_35) 2017; 9
Gao (ref_30) 2014; 5
Baris (ref_20) 2015; 21
DeBalsi (ref_48) 2017; 33
Henle (ref_39) 1996; 271
Sheng (ref_86) 2012; 120
Murphy (ref_26) 2009; 417
Vanderstraeten (ref_57) 1998; 273
Campbell (ref_96) 2011; 69
(ref_17) 1990; 100
Khrapko (ref_54) 2006; 5
Lin (ref_34) 2012; 71
Fellous (ref_68) 2009; 49
Koopman (ref_11) 2008; 1777
Malinska (ref_24) 2010; 1797
Sies (ref_22) 2017; 86
Hanes (ref_91) 2006; 281
Campbell (ref_95) 2012; 12
Mossmann (ref_88) 2014; 20
Payne (ref_71) 2011; 43
Krishnan (ref_73) 2008; 40
Guo (ref_75) 2010; 26
Szczepanowska (ref_2) 2017; 61
Kujoth (ref_15) 2005; 309
Zorov (ref_27) 2014; 94
Halliwell (ref_38) 1991; 281
Nekhaeva (ref_7) 2002; 99
Khrapko (ref_21) 2014; 127
Henzler (ref_28) 2000; 51
Srivastava (ref_74) 2005; 14
(ref_19) 1989; 134
ref_80
Levi (ref_29) 2009; 1790
ref_45
Vila (ref_83) 2016; 22
Lee (ref_50) 2006; 281
Vermulst (ref_60) 2008; 40
Bender (ref_9) 2006; 38
Ahlqvist (ref_62) 2012; 15
Horton (ref_5) 1992; 2
Foury (ref_56) 1992; 11
Lin (ref_89) 2002; 11
Nicholls (ref_79) 2014; 23
Graziewicz (ref_47) 2007; 16
Ross (ref_53) 2014; 4
Dai (ref_61) 2010; 9
Wang (ref_41) 1998; 400
Hoekstra (ref_46) 2016; 80
Wanrooij (ref_78) 2004; 32
Wanagat (ref_18) 2001; 15
Taylor (ref_67) 2003; 112
Claude (ref_25) 2013; 33
Petrat (ref_33) 2001; 356
Dunn (ref_51) 2011; 33
Baron (ref_93) 2007; 35
Kudin (ref_23) 2004; 279
11381261 - Nat Genet. 2001 Jun;28(2):147-50
19309719 - Hepatology. 2009 May;49(5):1655-63
1321035 - EMBO J. 1992 Jul;11(7):2717-26
11809722 - Hum Mol Genet. 2002 Jan 15;11(2):133-45
21368114 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4135-40
15164064 - Nature. 2004 May 27;429(6990):417-23
8702888 - J Biol Chem. 1996 Aug 30;271(35):21177-86
11943860 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5521-6
25409153 - Nature. 2015 Jan 29;517(7536):635-9
25955204 - Cell Metab. 2015 May 5;21(5):667-77
18948172 - Biochim Biophys Acta. 2009 Jul;1790(7):629-36
19796285 - FEBS J. 2009 Oct;276(20):5768-87
17005553 - J Biol Chem. 2006 Nov 24;281(47):36241-8
11141179 - J Exp Bot. 2000 Dec;51(353):2053-66
11156948 - FASEB J. 2001 Feb;15(2):322-32
17090418 - Free Radic Res. 2006 Dec;40(12):1284-94
25149213 - Prog Mol Biol Transl Sci. 2014;127:29-62
29281123 - FEBS Lett. 2018 Mar;592(5):728-742
21406249 - Mitochondrion. 2012 Mar;12(2):173-9
19244310 - Nucleic Acids Res. 2009 Apr;37(7):2327-35
18305478 - Nat Genet. 2008 Mar;40(3):275-9
21446022 - Ann Neurol. 2011 Mar;69(3):481-92
11978482 - Free Radic Biol Med. 2002 May 1;32(9):804-12
1497308 - Annu Rev Biochem. 1992;61:1175-212
24516391 - PLoS Genet. 2014 Feb 06;10(2):e1003974
19061483 - Biochem J. 2009 Jan 1;417(1):1-13
28944802 - Metallomics. 2017 Oct 18;9(10 ):1447-1455
25991500 - Biopolymers. 2015 Sep;103(9):491-508
9685598 - Mutat Res. 1998 May 25;400(1-2):99-115
26993140 - Acta Neuropathol. 2016 Aug;132(2):277-88
27143693 - Ageing Res Rev. 2017 Jan;33:89-104
17956319 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1228-31
15181170 - Nucleic Acids Res. 2004 Jun 04;32(10):3053-64
20211146 - Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1163-70
2554297 - Proc Natl Acad Sci U S A. 1989 Oct;86(20):7952-6
14625276 - J Biol Chem. 2004 Feb 6;279(6):4127-35
20937894 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18670-5
24621297 - Aging Cell. 2014 Aug;13(4):765-8
16604072 - Nat Genet. 2006 May;38(5):518-20
22225879 - Cell Metab. 2012 Jan 4;15(1):100-9
20591530 - Trends Genet. 2010 Aug;26(8):340-3
18311139 - Nat Genet. 2008 Apr;40(4):392-4
16020738 - Science. 2005 Jul 15;309(5733):481-4
24986917 - Hum Mol Genet. 2014 Dec 1;23(23):6147-62
28698307 - Essays Biochem. 2017 Jul 11;61(3):325-337
22077634 - J Neurochem. 2012 Feb;120(3):419-29
10325435 - Nucleic Acids Res. 1999 Jun 1;27(11):2434-41
16365283 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18769-70
16842501 - Aging Cell. 2006 Jun;5(3):279-82
11079540 - Ann Neurol. 2000 Nov;48(5):766-73
19036942 - Am J Physiol Cell Physiol. 2009 Feb;296(2):C355-62
28453550 - PLoS One. 2017 Apr 28;12 (4):e0176795
28094012 - Cell Metab. 2017 Jan 10;25(1):57-71
24987008 - Physiol Rev. 2014 Jul;94(3):909-50
1303288 - Nat Genet. 1992 Dec;2(4):324-9
24086148 - PLoS Genet. 2013;9(9):e1003794
17725985 - Hum Mol Genet. 2007 Nov 15;16(22):2729-39
24227736 - J Neurosci. 2013 Nov 13;33(46):18270-6
11336636 - Biochem J. 2001 May 15;356(Pt 1):61-9
19095717 - Hum Mol Genet. 2009 Mar 15;18(6):1028-36
27874000 - Nat Commun. 2016 Nov 22;7:13548
28209927 - Aging (Albany NY). 2017 Feb 15;9(2):315-339
18435906 - Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):853-9
16909848 - Biofizika. 2006 Jul-Aug;51(4):692-7
26609070 - Mol Biol Cell. 2016 Jan 15;27(2):223-35
16392116 - Ann Neurol. 2006 Mar;59(3):478-89
2541614 - Am J Pathol. 1989 May;134(5):1167-73
11829750 - Biochem J. 2002 Feb 15;362(Pt 1):137-47
17219451 - Chembiochem. 2007 Feb 12;8(3):341-52
25761946 - Neuroscientist. 2016 Jun;22(3):266-77
20456298 - Aging Cell. 2010 Aug;9(4):536-44
24596558 - Front Pharmacol. 2014 Feb 17;5:19
14597761 - J Clin Invest. 2003 Nov;112(9):1351-60
22688405 - Acta Neuropathol. 2012 Aug;124(2):209-20
29257976 - Neurobiol Aging. 2018 Mar;63:120-127
16604074 - Nat Genet. 2006 May;38(5):515-7
23965628 - Nature. 2013 Sep 19;501(7467):412-5
1965203 - J Neurol Sci. 1990 Dec;100(1-2):14-21
26182419 - Neuron. 2015 Jul 15;87(2):371-81
21706004 - Nat Genet. 2011 Jun 26;43(8):806-10
15703189 - Hum Mol Genet. 2005 Apr 1;14(7):893-902
749453 - Acta Biol Med Ger. 1978;37(8):1167-76
17005554 - J Biol Chem. 2006 Nov 24;281(47):36236-40
9363794 - Neurobiol Aging. 1996 Nov-Dec;17(6):843-8
9726974 - J Biol Chem. 1998 Sep 11;273(37):23690-7
27315116 - Ann Neurol. 2016 Aug;80(2):301-6
16457620 - Biochemistry (Mosc). 2006 Jan;71(1):60-7
25299268 - Sci Rep. 2014 Oct 09;4:6569
28441057 - Annu Rev Biochem. 2017 Jun 20;86:715-748
12031622 - Neuromuscul Disord. 2002 Jun;12(5):484-93
1303287 - Nat Genet. 1992 Dec;2(4):318-23
22718549 - Ann Neurol. 2012 Jun;71(6):850-4
25176146 - Cell Metab. 2014 Oct 7;20(4):662-9
20628647 - PLoS One. 2010 Jul 07;5(7):e11468
1849843 - FEBS Lett. 1991 Apr 9;281(1-2):9-19
21826691 - Bioessays. 2011 Oct;33(10):742-8
References_xml – volume: 11
  start-page: 2717
  year: 1992
  ident: ref_56
  article-title: Yeast mitochondrial DNA mutators with deficient proofreading exonucleolytic activity
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05337.x
– volume: 16
  start-page: 2729
  year: 2007
  ident: ref_47
  article-title: The DNA polymerase γ Y955C disease variant associated with PEO and parkinsonism mediates the incorporation and translesion synthesis opposite 7,8-dihydro-8-oxo-20-deoxyguanosine
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm227
– volume: 108
  start-page: 4135
  year: 2011
  ident: ref_63
  article-title: Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1019581108
– volume: 296
  start-page: C355
  year: 2009
  ident: ref_12
  article-title: Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00415.2007
– volume: 281
  start-page: 9
  year: 1991
  ident: ref_38
  article-title: DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(91)80347-6
– volume: 87
  start-page: 371
  year: 2015
  ident: ref_55
  article-title: Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.034
– volume: 15
  start-page: 322
  year: 2001
  ident: ref_18
  article-title: Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0320com
– volume: 1797
  start-page: 1163
  year: 2010
  ident: ref_24
  article-title: Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2010.03.001
– volume: 32
  start-page: 804
  year: 2002
  ident: ref_40
  article-title: Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(02)00787-6
– volume: 38
  start-page: 515
  year: 2006
  ident: ref_9
  article-title: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng1769
– volume: 417
  start-page: 1
  year: 2009
  ident: ref_26
  article-title: How mitochondria produce reactive oxygen species
  publication-title: Biochem. J.
  doi: 10.1042/BJ20081386
– ident: ref_80
  doi: 10.1371/journal.pone.0176795
– volume: 4
  start-page: 6569
  year: 2014
  ident: ref_53
  article-title: Maternally transmitted mitochondrial DNA mutations can reduce lifespan
  publication-title: Sci. Rep.
  doi: 10.1038/srep06569
– volume: 20
  start-page: 662
  year: 2014
  ident: ref_88
  article-title: Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.07.024
– volume: 592
  start-page: 728
  year: 2018
  ident: ref_90
  article-title: Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12956
– volume: 127
  start-page: 29
  year: 2014
  ident: ref_21
  article-title: Mitochondrial DNA mutations in aging
  publication-title: Prog. Mol. Biol. Transl. Sci.
  doi: 10.1016/B978-0-12-394625-6.00002-7
– volume: 40
  start-page: 1284
  year: 2006
  ident: ref_4
  article-title: Mitochondrial DNA damage and the aging process: Facts and imaginations
  publication-title: Free Radic. Res.
  doi: 10.1080/10715760600913168
– volume: 132
  start-page: 277
  year: 2016
  ident: ref_49
  article-title: Neuropathological signs of inflammation correlate with mitochondrial DNA deletions in mesial temporal lobe epilepsy
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-016-1561-1
– volume: 501
  start-page: 412
  year: 2013
  ident: ref_52
  article-title: Germline mitochondrial DNA mutations aggravate ageing and can impair brain development
  publication-title: Nature
  doi: 10.1038/nature12474
– volume: 9
  start-page: 315
  year: 2017
  ident: ref_64
  article-title: Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1
  publication-title: Aging
  doi: 10.18632/aging.101174
– volume: 12
  start-page: 173
  year: 2012
  ident: ref_95
  article-title: Mitochondrial changes associated with demyelination: Consequences for axonal integrity
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2011.03.007
– volume: 100
  start-page: 14
  year: 1990
  ident: ref_17
  article-title: Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: An age-related alteration
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(90)90006-9
– volume: 80
  start-page: 301
  year: 2016
  ident: ref_46
  article-title: Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24709
– volume: 103
  start-page: 491
  year: 2015
  ident: ref_44
  article-title: Impact of thymine glycol damage on DNA duplex energetics: Correlations with lesion-induced biochemical and structural consequences
  publication-title: Biopolymers
  doi: 10.1002/bip.22680
– volume: 7
  start-page: 13548
  year: 2016
  ident: ref_84
  article-title: Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13548
– volume: 13
  start-page: 765
  year: 2014
  ident: ref_65
  article-title: In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice
  publication-title: Aging Cell
  doi: 10.1111/acel.12212
– volume: 86
  start-page: 7952
  year: 1989
  ident: ref_72
  article-title: Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: A slip-replication model and metabolic therapy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.20.7952
– volume: 429
  start-page: 417
  year: 2004
  ident: ref_14
  article-title: Premature ageing in mice expressing defective mitochondrial DNA polymerase
  publication-title: Nature
  doi: 10.1038/nature02517
– volume: 71
  start-page: 850
  year: 2012
  ident: ref_34
  article-title: Somatic mitochondrial DNA mutations in early Parkinson and incidental Lewy body disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23568
– volume: 49
  start-page: 1655
  year: 2009
  ident: ref_68
  article-title: Locating the stem cell niche and tracing hepatocyte lineages in human liver
  publication-title: Hepatology
  doi: 10.1002/hep.22791
– volume: 25
  start-page: 57
  year: 2017
  ident: ref_3
  article-title: Mammalian mitochondria and aging: An update
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.09.017
– volume: 32
  start-page: 3053
  year: 2004
  ident: ref_78
  article-title: Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh634
– volume: 112
  start-page: 1351
  year: 2003
  ident: ref_67
  article-title: Mitochondrial DNA mutations in human colonic crypt stem cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI19435
– volume: 281
  start-page: 36236
  year: 2006
  ident: ref_50
  article-title: Fidelity of the human mitochondrial DNA polymerase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M607964200
– volume: 107
  start-page: 18670
  year: 2010
  ident: ref_87
  article-title: Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1006586107
– volume: 11
  start-page: 133
  year: 2002
  ident: ref_89
  article-title: High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/11.2.133
– volume: 40
  start-page: 275
  year: 2008
  ident: ref_73
  article-title: What causes mitochondrial DNA deletions in human cells?
  publication-title: Nat. Genet.
  doi: 10.1038/ng.f.94
– volume: 362
  start-page: 137
  year: 2002
  ident: ref_31
  article-title: Selective determination of mitochondrial chelatable iron in viable cells with a new fluorescent sensor
  publication-title: Biochem. J.
  doi: 10.1042/bj3620137
– volume: 517
  start-page: 635
  year: 2015
  ident: ref_43
  article-title: Uncovering the polymerase induced cytotoxicity of an oxidized nucleotide
  publication-title: Nature
  doi: 10.1038/nature13886
– volume: 51
  start-page: 2053
  year: 2000
  ident: ref_28
  article-title: Transport and metabolic degradation of hydrogen peroxide in Chara corallina: Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/51.353.2053
– volume: 59
  start-page: 478
  year: 2006
  ident: ref_94
  article-title: Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20736
– volume: 18
  start-page: 1028
  year: 2009
  ident: ref_77
  article-title: Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddn437
– volume: 35
  start-page: 1228
  year: 2007
  ident: ref_93
  article-title: Mitochondrial dysfunction in neurodegenerative disorders
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0351228
– volume: 99
  start-page: 5521
  year: 2002
  ident: ref_7
  article-title: Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.072670199
– volume: 37
  start-page: 2327
  year: 2009
  ident: ref_82
  article-title: Mice expressing an error-prone DNA polymerase in mitochondria display elevated replication pausing and chromosomal breakage at fragile sites of mitochondrial DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp091
– volume: 1790
  start-page: 629
  year: 2009
  ident: ref_29
  article-title: The role of iron in mitochondrial function
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2008.09.008
– volume: 15
  start-page: 100
  year: 2012
  ident: ref_62
  article-title: Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.11.012
– volume: 5
  start-page: 19
  year: 2014
  ident: ref_30
  article-title: Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2014.00019
– volume: 356
  start-page: 61
  year: 2001
  ident: ref_33
  article-title: Subcellular distribution of chelatable iron: A laser scanning microscopic study in isolated hepatocytes and liver endothelial cells
  publication-title: Biochem. J.
  doi: 10.1042/bj3560061
– volume: 281
  start-page: 36241
  year: 2006
  ident: ref_91
  article-title: Incorporation and replication of 8-oxo-deoxyguanosine by the human mitochondrial DNA polymerase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M607965200
– volume: 14
  start-page: 893
  year: 2005
  ident: ref_74
  article-title: Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi082
– volume: 86
  start-page: 715
  year: 2017
  ident: ref_22
  article-title: Oxidative stress
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061516-045037
– volume: 28
  start-page: 147
  year: 2001
  ident: ref_8
  article-title: High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection
  publication-title: Nat. Genet.
  doi: 10.1038/88859
– volume: 94
  start-page: 909
  year: 2014
  ident: ref_27
  article-title: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00026.2013
– volume: 2
  start-page: 324
  year: 1992
  ident: ref_5
  article-title: Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age
  publication-title: Nat. Genet.
  doi: 10.1038/ng1292-324
– volume: 309
  start-page: 481
  year: 2005
  ident: ref_15
  article-title: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging
  publication-title: Science
  doi: 10.1126/science.1112125
– volume: 279
  start-page: 4127
  year: 2004
  ident: ref_23
  article-title: Characterization of superoxide-producing sites in isolated brain mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M310341200
– volume: 37
  start-page: 1167
  year: 1978
  ident: ref_36
  article-title: The dependence on the extramitochondrial ATP/ADP-ratio of the oxidative phosphorylation in mitochondria isolated by a new procedure from rat skeletal muscle
  publication-title: Acta Biol. Med. Ger.
– volume: 69
  start-page: 481
  year: 2011
  ident: ref_96
  article-title: Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22109
– volume: 134
  start-page: 1167
  year: 1989
  ident: ref_19
  article-title: Cytochrome-c-oxidase deficient cardiomyocytes in the human heart—An age-related phenomenon. A histochemical ultracytochemical study
  publication-title: Am. J. Pathol.
– volume: 33
  start-page: 742
  year: 2011
  ident: ref_51
  article-title: Running on empty: Does mitochondrial DNA mutation limit replicative lifespan in yeast?
  publication-title: Bioessays
  doi: 10.1002/bies.201100050
– volume: 63
  start-page: 120
  year: 2017
  ident: ref_85
  article-title: Ultradeep mapping of neuronal mitochondrial deletions in Parkinson’s disease
  publication-title: Neurobiol. Aging.
  doi: 10.1016/j.neurobiolaging.2017.10.024
– volume: 23
  start-page: 6147
  year: 2014
  ident: ref_79
  article-title: Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu336
– volume: 124
  start-page: 209
  year: 2012
  ident: ref_81
  article-title: Clonally expanded mitochondrial DNA deletions within the choroid plexus in multiple sclerosis
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-012-1001-9
– volume: 27
  start-page: 223
  year: 2016
  ident: ref_76
  article-title: Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e15-05-0260
– volume: 276
  start-page: 5768
  year: 2009
  ident: ref_1
  article-title: Is there more to aging than mitochondrial DNA and reactive oxygen species?
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.07269.x
– ident: ref_13
  doi: 10.1371/journal.pgen.1003974
– volume: 1777
  start-page: 853
  year: 2008
  ident: ref_11
  article-title: Mitigation of NADH: Ubiquinone oxidoreductase deficiency by chronic Trolox treatment
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2008.03.028
– volume: 102
  start-page: 18769
  year: 2005
  ident: ref_59
  article-title: The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0509776102
– volume: 8
  start-page: 341
  year: 2007
  ident: ref_32
  article-title: Assessment of chelatable mitochondrial Iron by using mitochondrion-selective fluorescent iron indicators with different iron-binding affinities
  publication-title: Chem. Bio. Chem.
  doi: 10.1002/cbic.200600311
– volume: 5
  start-page: 279
  year: 2006
  ident: ref_54
  article-title: Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging?
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2006.00209.x
– volume: 2
  start-page: 318
  year: 1992
  ident: ref_6
  article-title: Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain
  publication-title: Nat. Genet.
  doi: 10.1038/ng1292-318
– ident: ref_45
  doi: 10.1371/journal.pgen.1003794
– volume: 61
  start-page: 1175
  year: 1992
  ident: ref_16
  article-title: Diseases of the mitochondrial DNA
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.61.070192.005523
– volume: 48
  start-page: 766
  year: 2000
  ident: ref_92
  article-title: Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(200011)48:5<766::AID-ANA10>3.0.CO;2-M
– volume: 33
  start-page: 89
  year: 2017
  ident: ref_48
  article-title: Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.04.006
– volume: 61
  start-page: 325
  year: 2017
  ident: ref_2
  article-title: Origins of mtDNA mutations in ageing
  publication-title: Essays Biochem.
  doi: 10.1042/EBC20160090
– volume: 27
  start-page: 2434
  year: 1999
  ident: ref_69
  article-title: Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.11.2434
– volume: 273
  start-page: 23690
  year: 1998
  ident: ref_57
  article-title: The role of 3′-5′ exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.37.23690
– volume: 43
  start-page: 806
  year: 2011
  ident: ref_71
  article-title: Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations
  publication-title: Nat. Genet.
  doi: 10.1038/ng.863
– volume: 400
  start-page: 99
  year: 1998
  ident: ref_41
  article-title: Mutagenicity and repair of oxidative DNA damage: Insights from studies using defined lesions
  publication-title: Mutat. Res.
  doi: 10.1016/S0027-5107(98)00066-9
– volume: 33
  start-page: 18270
  year: 2013
  ident: ref_25
  article-title: Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2211-13.2013
– ident: ref_58
  doi: 10.1371/journal.pone.0011468
– volume: 21
  start-page: 667
  year: 2015
  ident: ref_20
  article-title: Mosaic deficiency in mitochondrial oxidative metabolism promotes cardiac arrhythmia during aging
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.04.005
– volume: 9
  start-page: 536
  year: 2010
  ident: ref_61
  article-title: Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2010.00581.x
– volume: 51
  start-page: 692
  year: 2006
  ident: ref_37
  article-title: Proteins associated with mitochondrial DNA protect it against the action of X-rays and hydrogen peroxide
  publication-title: Biofizika
– volume: 26
  start-page: 340
  year: 2010
  ident: ref_75
  article-title: Repeats, longevity and the sources of mtDNA deletions: Evidence from ‘deletional spectra’
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2010.05.006
– volume: 22
  start-page: 266
  year: 2016
  ident: ref_83
  article-title: The Parkinson disease mitochondrial hypothesis: Where are we at?
  publication-title: Neuroscientist
  doi: 10.1177/1073858415574600
– volume: 271
  start-page: 21177
  year: 1996
  ident: ref_39
  article-title: Oxidative damage to DNA constituents by iron-mediated Fenton reactions. The deoxyguanosine family
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.35.21177
– volume: 40
  start-page: 392
  year: 2008
  ident: ref_60
  article-title: DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice
  publication-title: Nat. Genet.
  doi: 10.1038/ng.95
– volume: 17
  start-page: 843
  year: 1996
  ident: ref_66
  article-title: Cytochrome c oxidase defects of the human substantia nigra in normal aging
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(96)00168-6
– volume: 38
  start-page: 518
  year: 2006
  ident: ref_10
  article-title: Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons
  publication-title: Nat. Genet.
  doi: 10.1038/ng1778
– volume: 71
  start-page: 60
  year: 2006
  ident: ref_42
  article-title: Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal
  publication-title: Biochemistry
– volume: 9
  start-page: 1447
  year: 2017
  ident: ref_35
  article-title: Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson’s disease brain
  publication-title: Metallomics
  doi: 10.1039/C7MT00244K
– volume: 12
  start-page: 484
  year: 2002
  ident: ref_70
  article-title: Ageing muscle: Clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/S0960-8966(01)00332-7
– volume: 120
  start-page: 419
  year: 2012
  ident: ref_86
  article-title: Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2011.07581.x
– reference: 1303287 - Nat Genet. 1992 Dec;2(4):318-23
– reference: 17005554 - J Biol Chem. 2006 Nov 24;281(47):36236-40
– reference: 26182419 - Neuron. 2015 Jul 15;87(2):371-81
– reference: 11809722 - Hum Mol Genet. 2002 Jan 15;11(2):133-45
– reference: 15164064 - Nature. 2004 May 27;429(6990):417-23
– reference: 25409153 - Nature. 2015 Jan 29;517(7536):635-9
– reference: 16604074 - Nat Genet. 2006 May;38(5):515-7
– reference: 18435906 - Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):853-9
– reference: 22718549 - Ann Neurol. 2012 Jun;71(6):850-4
– reference: 28453550 - PLoS One. 2017 Apr 28;12 (4):e0176795
– reference: 2554297 - Proc Natl Acad Sci U S A. 1989 Oct;86(20):7952-6
– reference: 19061483 - Biochem J. 2009 Jan 1;417(1):1-13
– reference: 16909848 - Biofizika. 2006 Jul-Aug;51(4):692-7
– reference: 25299268 - Sci Rep. 2014 Oct 09;4:6569
– reference: 1303288 - Nat Genet. 1992 Dec;2(4):324-9
– reference: 24621297 - Aging Cell. 2014 Aug;13(4):765-8
– reference: 24986917 - Hum Mol Genet. 2014 Dec 1;23(23):6147-62
– reference: 749453 - Acta Biol Med Ger. 1978;37(8):1167-76
– reference: 17956319 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1228-31
– reference: 28209927 - Aging (Albany NY). 2017 Feb 15;9(2):315-339
– reference: 16365283 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18769-70
– reference: 16457620 - Biochemistry (Mosc). 2006 Jan;71(1):60-7
– reference: 2541614 - Am J Pathol. 1989 May;134(5):1167-73
– reference: 11336636 - Biochem J. 2001 May 15;356(Pt 1):61-9
– reference: 29281123 - FEBS Lett. 2018 Mar;592(5):728-742
– reference: 11943860 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5521-6
– reference: 26609070 - Mol Biol Cell. 2016 Jan 15;27(2):223-35
– reference: 16604072 - Nat Genet. 2006 May;38(5):518-20
– reference: 17219451 - Chembiochem. 2007 Feb 12;8(3):341-52
– reference: 28094012 - Cell Metab. 2017 Jan 10;25(1):57-71
– reference: 21706004 - Nat Genet. 2011 Jun 26;43(8):806-10
– reference: 27874000 - Nat Commun. 2016 Nov 22;7:13548
– reference: 16020738 - Science. 2005 Jul 15;309(5733):481-4
– reference: 17090418 - Free Radic Res. 2006 Dec;40(12):1284-94
– reference: 12031622 - Neuromuscul Disord. 2002 Jun;12(5):484-93
– reference: 27315116 - Ann Neurol. 2016 Aug;80(2):301-6
– reference: 11156948 - FASEB J. 2001 Feb;15(2):322-32
– reference: 15181170 - Nucleic Acids Res. 2004 Jun 04;32(10):3053-64
– reference: 11978482 - Free Radic Biol Med. 2002 May 1;32(9):804-12
– reference: 15703189 - Hum Mol Genet. 2005 Apr 1;14(7):893-902
– reference: 22688405 - Acta Neuropathol. 2012 Aug;124(2):209-20
– reference: 11079540 - Ann Neurol. 2000 Nov;48(5):766-73
– reference: 19309719 - Hepatology. 2009 May;49(5):1655-63
– reference: 25149213 - Prog Mol Biol Transl Sci. 2014;127:29-62
– reference: 25991500 - Biopolymers. 2015 Sep;103(9):491-508
– reference: 9726974 - J Biol Chem. 1998 Sep 11;273(37):23690-7
– reference: 20456298 - Aging Cell. 2010 Aug;9(4):536-44
– reference: 20628647 - PLoS One. 2010 Jul 07;5(7):e11468
– reference: 24596558 - Front Pharmacol. 2014 Feb 17;5:19
– reference: 28698307 - Essays Biochem. 2017 Jul 11;61(3):325-337
– reference: 21368114 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4135-40
– reference: 1965203 - J Neurol Sci. 1990 Dec;100(1-2):14-21
– reference: 28944802 - Metallomics. 2017 Oct 18;9(10 ):1447-1455
– reference: 29257976 - Neurobiol Aging. 2018 Mar;63:120-127
– reference: 22225879 - Cell Metab. 2012 Jan 4;15(1):100-9
– reference: 1849843 - FEBS Lett. 1991 Apr 9;281(1-2):9-19
– reference: 1321035 - EMBO J. 1992 Jul;11(7):2717-26
– reference: 23965628 - Nature. 2013 Sep 19;501(7467):412-5
– reference: 10325435 - Nucleic Acids Res. 1999 Jun 1;27(11):2434-41
– reference: 19036942 - Am J Physiol Cell Physiol. 2009 Feb;296(2):C355-62
– reference: 21826691 - Bioessays. 2011 Oct;33(10):742-8
– reference: 25955204 - Cell Metab. 2015 May 5;21(5):667-77
– reference: 20591530 - Trends Genet. 2010 Aug;26(8):340-3
– reference: 17725985 - Hum Mol Genet. 2007 Nov 15;16(22):2729-39
– reference: 19095717 - Hum Mol Genet. 2009 Mar 15;18(6):1028-36
– reference: 9363794 - Neurobiol Aging. 1996 Nov-Dec;17(6):843-8
– reference: 17005553 - J Biol Chem. 2006 Nov 24;281(47):36241-8
– reference: 11141179 - J Exp Bot. 2000 Dec;51(353):2053-66
– reference: 25761946 - Neuroscientist. 2016 Jun;22(3):266-77
– reference: 18305478 - Nat Genet. 2008 Mar;40(3):275-9
– reference: 11381261 - Nat Genet. 2001 Jun;28(2):147-50
– reference: 26993140 - Acta Neuropathol. 2016 Aug;132(2):277-88
– reference: 24516391 - PLoS Genet. 2014 Feb 06;10(2):e1003974
– reference: 22077634 - J Neurochem. 2012 Feb;120(3):419-29
– reference: 14597761 - J Clin Invest. 2003 Nov;112(9):1351-60
– reference: 18948172 - Biochim Biophys Acta. 2009 Jul;1790(7):629-36
– reference: 24086148 - PLoS Genet. 2013;9(9):e1003794
– reference: 1497308 - Annu Rev Biochem. 1992;61:1175-212
– reference: 20937894 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18670-5
– reference: 19796285 - FEBS J. 2009 Oct;276(20):5768-87
– reference: 8702888 - J Biol Chem. 1996 Aug 30;271(35):21177-86
– reference: 9685598 - Mutat Res. 1998 May 25;400(1-2):99-115
– reference: 25176146 - Cell Metab. 2014 Oct 7;20(4):662-9
– reference: 20211146 - Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1163-70
– reference: 24987008 - Physiol Rev. 2014 Jul;94(3):909-50
– reference: 18311139 - Nat Genet. 2008 Apr;40(4):392-4
– reference: 14625276 - J Biol Chem. 2004 Feb 6;279(6):4127-35
– reference: 27143693 - Ageing Res Rev. 2017 Jan;33:89-104
– reference: 16392116 - Ann Neurol. 2006 Mar;59(3):478-89
– reference: 28441057 - Annu Rev Biochem. 2017 Jun 20;86:715-748
– reference: 21446022 - Ann Neurol. 2011 Mar;69(3):481-92
– reference: 19244310 - Nucleic Acids Res. 2009 Apr;37(7):2327-35
– reference: 16842501 - Aging Cell. 2006 Jun;5(3):279-82
– reference: 11829750 - Biochem J. 2002 Feb 15;362(Pt 1):137-47
– reference: 24227736 - J Neurosci. 2013 Nov 13;33(46):18270-6
– reference: 21406249 - Mitochondrion. 2012 Mar;12(2):173-9
SSID ssj0000402005
Score 2.3207185
SecondaryResourceType review_article
Snippet Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 175
SubjectTerms Aging
Deoxyribonucleic acid
DNA
DNA sequencing
DNA-directed DNA polymerase
Hydrogen peroxide
Mitochondrial DNA
Mutation
Oxidative stress
Reactive oxygen species
Review
Transversion
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_0pOCLtFo1VssK9qmE5vYjmzwUOauigtdyVvAtJLsbPThyp0bQ_74z-fKs6Gt2YMPs7nzszvx-AHtKCisjQwTEQvtSp8JHPy_8PA20RY9ts6pJ7HwYnlzKsyt1tQDDtheGyipbm1gZajs1dEeOSTpmIopLpfdntz6xRtHrakuhkTbUCvZnBTG2CEtoklXQg6WDo-GfUXfrElC6FKi6Al5gvv_jmkxKjN_7VGo475teBZz_103OOaLjj7DSRJBsUC_5J1hwxSp8qDkln9ZgdHrPcO3vHLsoxxOUK57YaDpxDKNT9vtxbCukb3ZR9YiwccHO8UyjDSwsbUV2OBz4hw0xbskGRGG0_xkuj4_-_jrxG-IE38g-L_2Mh0Iawa20Kk-ti6M04LnjIjax03kWC6OUI3ZOo1EgjHMRyiATmTBGcpmKdegV08JtAtPUCCu4sy4MZRYQlKGhl9VIxUY4pz343qosMQ2qOJFbTBLMLkjBybyCPfjWSc9qNI035LZb7SfNmbpPnneAB7vdMJ4GeuJICzd9IJkKHkiK0IONerG6iTj18EZB5IF-sYydACFtvxwpxjcV4rbCLFX19db7v_UFlnH-qmOR97ehV949uB0MWcrsa7MP_wGu_-v1
  priority: 102
  providerName: ProQuest
Title Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?
URI https://www.ncbi.nlm.nih.gov/pubmed/29561808
https://www.proquest.com/docview/2040952457
https://www.proquest.com/docview/2017055436
https://pubmed.ncbi.nlm.nih.gov/PMC5924517
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-NAEB_8QPBF9D60d56s4D0dOdP9yCYPh9QvVLB3VAu-hWR3o4WSao1g_3tnNmmxegf3GHbIwszszgw78_sB7CkprIwNERALHUidiQDjvAiKLNQWI7bN_ZDYZTc668uLG3WzAFO20UaBj38t7YhPqj8e_nx-mBzggf9FFSeW7Pu3dCsk6I0YChdh2b8UURNfk-j7O5nKJN_PyNGnA4meWnfBv_vBfHx6l3S-7Z18FYxO12GtySJZpzb7Biy48gOs1LySk4_QO39kaP-xY1fVYIhy5YT1RkPHMENlv58H1qN9sys_J8IGJbvEc42qKC25IzvudoLjhhy3Yh2iMTr4BP3Tk-ujs6AhTwiMbPMqyHkkpBHcSquKzLokzkJeOC4Skzhd5IkwSjli6DQaBaKkEJEMc5ELYySXmfgMS-WodFvANA3DCu6siyKZhwRnaOh1NVaJEc7pFvyYqiw1DbI4EVwMU6wwSMHpawW34PtM-r5G1PiH3PZU--nULVKOa4niUuGmu7NlPBH0zJGVbvREMh4iSIqoBZu1sWYbcZrjjcO4BXrOjDMBQtueXykHdx51W2Glqtr6y3_s-xVW8cOPLvL2NixV4yf3DXOXKt-B5cOT7p_ejnfPF-dZ7bc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAotET8jC2YfXPlRVIK0S2gSUtlJvxt5dt5EipzSuIH-O38aM7ZgUBLdevSPbmp2d2dmd-T6At0oKKyNDBMRC-1Knwsc4L_w8DbTFiG2zqklsNA4HJ_LTqTrdgJ-rXhgqq1z5xMpR27mhM3JM0jETUVwqvXvxzSfWKLpdXVFopA21gt2pIMaaxo4Dt_yOKdxiZ9jH-d7mfH_v-OPAb1gGfCO7vPQzHgppBLfSqjy1Lo7SgOeOi9jETudZLIxSjqgsjUaBMM5FKINMZMIYyWUq8L23YFPSAUoHNj_sjb9M2lOegNKzQNUV90LEwfszcmExPu9SaeN6LPxrg_tnneZa4Nu_D_eaHSvr1Sb2ADZc8RBu1xyWy0cwGS4Y2tqlY0fldIZyxZJN5jPHcDfMPv-Y2gpZnB1VPSlsWrAR-hD0uYUl02f9cc_vN0S8JesRZdLuYzi5ERU-gU4xL9wzYJoabwV31oWhzAKCTjR0kxup2AjntAfvVipLTINiTmQaswSzGVJwsq5gD7Zb6YsaveMfclsr7SfNGl4kvy3OgzftMK4-ulJJCze_IpkKjkiK0IOn9WS1H-LUMxwFkQf62jS2AoTsfX2kmJ5XCN8Ks2LV1c___1uv4c7geHSYHA7HBy_gLv5L1S3Ju1vQKS-v3EvcLpXZq8YmGXy96WXwCxKrKW0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VViAuiDeGAotET8jC2YfXPlRVII0aSkOVUqk3195d00iR0zauIH-RX8WMX6QguPXqHdmr2Xl6Z-YDeKuksDIyBEAstC91Knz088LP00Bb9Ng2q5rEDsbh3rH8dKJO1uBn2wtDZZWtTawMtZ0b-keOSTpmIopLTODzpizicDDcOb_wCUGKblpbOI20gVmw29W4sabJY98tv2M6t9geDfDstzgf7n79uOc3iAO-kT1e-hkPhTSCW2lVnloXR2nAc8dFbGKn8ywWRilHsJZGI0EY5yKUQSYyYYzkMhX43luwodHrYyK48WF3fDjp_vgElKoFqq6-FyIO3n8jcxbj8x6VOa76xb-C3T9rNlec4PA-3GuiV9avxe0BrLniIdyu8SyXj2AyWjCUu0vHjsrpDOmKJZvMZ45hZMy-_Jjaaso4O6r6U9i0YAdoT9D-FpbUgA3GfX_QgPKWrE_wSTuP4fhGWPgE1ot54Z4B09SEK7izLgxlFtAYRUO3upGKjXBOe_CuZVlimonmBKwxSzCzIQYnqwz2YKujPq8nefyDbrPlftLo8yL5LX0evOmWURPpeiUt3PyKaKrRRFKEHjytD6v7EKf-4SiIPNDXjrEjoCnf11eK6Vk17Vthhqx6-vn_t_Ua7qA6JJ9H4_0XcBe3UjVO8t4mrJeXV-4lRk5l9qoRSQanN60FvwDZJy2x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+There+Still+Any+Role+for+Oxidative+Stress+in+Mitochondrial+DNA-Dependent+Aging%3F&rft.jtitle=Genes&rft.au=Zsurka%2C+G%C3%A1bor&rft.au=Peeva%2C+Viktoriya&rft.au=Kotlyar%2C+Alexander&rft.au=Kunz%2C+Wolfram+S&rft.date=2018-03-21&rft.issn=2073-4425&rft.eissn=2073-4425&rft.volume=9&rft.issue=4&rft_id=info:doi/10.3390%2Fgenes9040175&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4425&client=summon