Selection-Driven Gene Inactivation in Salmonella

Abstract Bacterial genes are sometimes found to be inactivated by mutation. This inactivation may be observable simply because selection for function is intermittent or too weak to eliminate inactive alleles quickly. Here, I investigate cases in Salmonella enterica where inactivation is instead posi...

Full description

Saved in:
Bibliographic Details
Published inGenome biology and evolution Vol. 12; no. 3; pp. 18 - 34
Main Author Cherry, Joshua L
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2020
Subjects
Online AccessGet full text
ISSN1759-6653
1759-6653
DOI10.1093/gbe/evaa010

Cover

More Information
Summary:Abstract Bacterial genes are sometimes found to be inactivated by mutation. This inactivation may be observable simply because selection for function is intermittent or too weak to eliminate inactive alleles quickly. Here, I investigate cases in Salmonella enterica where inactivation is instead positively selected. These are identified by a rate of introduction of premature stop codons to a gene that is higher than expected under selective neutrality, as assessed by comparison to the rate of synonymous changes. I identify 84 genes that meet this criterion at a 10% false discovery rate. Many of these genes are involved in virulence, motility and chemotaxis, biofilm formation, and resistance to antibiotics or other toxic substances. It is hypothesized that most of these genes are subject to an ongoing process in which inactivation is favored under rare conditions, but the inactivated allele is deleterious under most other conditions and is subsequently driven to extinction by purifying selection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1759-6653
1759-6653
DOI:10.1093/gbe/evaa010