The well-posedness and stability of a beam equation with conjugate variables assigned at the same boundary point

A Euler-Bernoulli beam equation subject to a special boundary feedback is considered. The well-posedness problem of the system proposed by G. Chen is studied. This problem is in sharp contrast to the general principle in applied mathematics that the conjugate variables cannot be assigned simultaneou...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 50; no. 12; pp. 2087 - 2093
Main Authors GUO, Bao-Zhu, WANG, Jun-Min
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2005.860275

Cover

More Information
Summary:A Euler-Bernoulli beam equation subject to a special boundary feedback is considered. The well-posedness problem of the system proposed by G. Chen is studied. This problem is in sharp contrast to the general principle in applied mathematics that the conjugate variables cannot be assigned simultaneously at the same boundary point. We use the Riesz basis approach in our investigation. It is shown that the system is well-posed in the usual energy state space and that the state trajectories approach the zero eigenspace of the system as time goes to infinity. The relaxation of the applied mathematics principle gives more freedom in the design of boundary control for suppression of vibrations of flexible structures.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2005.860275